
Technical Disclosure Commons

Defensive Publications Series

April 08, 2019

Fuzz testing of smartphones and IoT devices
Keun Soo Yim

Ji Won Shin

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Yim, Keun Soo and Shin, Ji Won, "Fuzz testing of smartphones and IoT devices", Technical Disclosure Commons, (April 08, 2019)
https://www.tdcommons.org/dpubs_series/2123

https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F2123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F2123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F2123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/2123?utm_source=www.tdcommons.org%2Fdpubs_series%2F2123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Fuzz testing of smartphones and IoT devices

ABSTRACT

Fuzz testing is an effective technique for finding software vulnerabilities. Fuzzing works

by feeding quasi-random, auto-generated input sequences to a target program and searching for

failures. When used to test physical devices, fuzzing is found to occasionally brick the devices,

leading to significant testing expenses. Also, while existing kernel fuzzing is effective in finding

kernel-interface vulnerabilities, it is not as efficient in finding deeply-hidden vulnerabilities.

This disclosure presents an architecture for continuously running fuzz tests at scale on

physical devices, including on kernel and hardware abstraction layer (HAL) modules. Multiple

fuzzers run parallel tests and collaborate in a decentralized manner. Fuzzers share control flow

paths and corresponding code coverages as they are discovered. Fuzzers share syscall sequences

that brick devices as they are discovered, and arrive at an efficient set of sequences that

maximize test coverage.

KEYWORDS

Fuzzing; kernel fuzzing; hardware abstraction layer; HAL; device driver fuzzing; greybox

testing; decentralized scheduling; distributive testing; collaborative testing; fuzz testing

BACKGROUND

Fuzz testing (or simply, fuzzing) is a simple and practical technique for finding software

vulnerabilities. Fuzzing works by feeding quasi-random, auto-generated inputs into a target

program searching for failures. With the proliferation of consumer devices running operating

systems or kernels thereof, e.g., smartphones, TVs, smartwatches and other wearable devices,

automotive electronics, IoT devices, etc., fuzzing has emerged as an efficient testing procedure

that scales to large production volumes.

2

Yim and Shin: Fuzz testing of smartphones and IoT devices

Published by Technical Disclosure Commons, 2019

Fig. 1: The degree of randomness in fuzzing

 As shown in Fig. 1, the degree of randomness in fuzzing can be between whitebox

testing (systematic data and program analysis) and blackbox testing (searching for vulnerabilities

in a manner oblivious to program/data structure). Greybox fuzzing, which stands between

blackbox testing and whitebox testing, combines the speed of blackbox with the guidance of

whitebox.

Fig. 2: Path selection in fuzzing

3

Defensive Publications Series, Art. 2123 [2019]

https://www.tdcommons.org/dpubs_series/2123

Fig. 2 illustrates path selection in a typical fuzzing run. One or more fuzzers select

random paths (204) through a test graph (202). One path results in the finding of a vulnerability

(206).

When used to test physical devices, fuzzing is found to occasionally brick the devices,

leading to significant testing expenses. Use of multiple fuzzers can sometimes brick several

devices over the same failure. Also, while kernel fuzzing is effective in finding kernel-interface

vulnerabilities, it is not as efficient in finding deeply-hidden vulnerabilities. This is because a

sequence of randomly generated syscalls does not necessarily replicate real world user behavior,

e.g., taking a camera image, interacting with multiple device drivers, etc.

DESCRIPTION

This disclosure describes architectures for continuously running greybox fuzz tests at

scale on physical devices, including kernel and hardware abstraction layers (HAL), e.g., user-

space device drivers.

4

Yim and Shin: Fuzz testing of smartphones and IoT devices

Published by Technical Disclosure Commons, 2019

(a) (b)

Fig. 3: Greybox fuzzing guided by code coverage

Fig. 3 illustrates greybox fuzzing guided by code coverage, per techniques of this

disclosure. Fig. 3(a) illustrates the test flow in the style of a chart, while Fig. 3(b) illustrates the

test flow in the style of a graph. The fuzzer provides a random initial seed, e.g., input sequence,

to the target program (302). Graphically, an initial seed is represented by a sequence of red

arrows (304). The fuzzer mutates or crosses over the seed (306) in a manner similar to genetic

algorithms. The mutation is represented by purple branches (308) in the test graph, which deviate

away from the initial seed.

The code is executed (310). Program instrumentation measures code coverage (312). The

corpus, e.g., an input data set that leads to a specific control-flow path discovered by the fuzzing

run, is saved (314), if found interesting. If no error or vulnerability, e.g., crash, security leak,

5

Defensive Publications Series, Art. 2123 [2019]

https://www.tdcommons.org/dpubs_series/2123

memory leak, etc., is found (316), then the fuzzer loops back to 302, and tests the target with a

new mutation. If a vulnerability is found then it is declared (318). Examples of accumulated

corpuses, e.g., sets of input data with specific control-flow paths, are shown (320). With the

passage of time, the mutations result in good input sequences, e.g., sequences that provide good

coverage.

Kernel fuzzing

Fig. 4: Architecture for kernel fuzzing

 Fig. 4 illustrates an architecture for kernel fuzzing, per the techniques of this disclosure.

A kernel-under-test resides on a target (402), e.g., a physical device, on which also resides a

fuzzer (404). Testing is managed by a manager (408) that resides on a host (406). The host also

includes other components, e.g., a working directory (410). The cloud (412) serves as a

repository for system caller programs, reports, etc. Fuzzing is executed as follows.

1. The host fetches target information from the target.

2. The host sends device/target information to the cloud.

6

Yim and Shin: Fuzz testing of smartphones and IoT devices

Published by Technical Disclosure Commons, 2019

3. The host fetches from the cloud a system caller program appropriate to the target.

4. The manager (on the host) and the fuzzer (on the target) communicate, e.g., via RPC, to

establish and run the test.

5. Results are sent from the working directory to be collated at the cloud.

 The physical-device based fuzzing architecture described herein enables discovery of

bugs that are not easily discoverable under virtual environments. However, as mentioned before,

the use of physical devices for fuzzing can occasionally result in the device being bricked. When

multiple parallel fuzzers are used, such testing can sometimes brick several devices over the

same failure.

 Per the techniques of this disclosure, the multiple parallel fuzzers register syscall

sequences that resulted in bricked devices such that those sequences are avoided in future runs.

In this manner, coordination between the fuzzers minimizes damage to devices under test. The

fuzzers also coordinate to optimize coverage. Coordination between fuzzers is distributed, e.g.,

there is no central or cloud-based coordinating agency. Distributed fuzzer coordination, as

described herein, results in a simpler architecture and a robust test environment.

 When fuzzing kernels, it is worthwhile to note that a kernel may not behave in a fully

deterministic manner. For example, a sequence of syscalls may sometimes result in a bricked

device, and at other times it may not. Therefore, kernel fuzzing, per the techniques herein, is

carried out by generating several testing threads, assigning a set of syscalls to each, and running

for a long enough time to eliminate the non-determinism.

User-space device driver (HAL) fuzzing

User-space device driver fuzzing is performed by automatically generating fuzzer logic

from the specification of a component using compiler-based techniques. The fuzzer generates

7

Defensive Publications Series, Art. 2123 [2019]

https://www.tdcommons.org/dpubs_series/2123

structured random input comprising a specific sequence of high level function calls within a

practical control flow. The function calls are independent of the processor architecture and

device driver implementations. The fuzzing tool automatically generates fuzz drivers for the

given interface definition language specifications of a HAL module.

The fuzz drivers target given devices and HAL modules by using remote procedure calls

(RPC) and coverage-guided greybox fuzzing techniques. The fuzzing architecture collects the

corpus, e.g., an input data set that leads to specific control-flow paths discovered by previous

fuzzing runs, and similar to genetic algorithms, intelligently selects input seeds, so as to increase

the chance of finding critical vulnerabilities. The fuzzing architecture is decentralized, e.g., the

fuzzers coordinate without a central agency to sift through the corpus to discover relevant new

seeds. Additionally, various heuristics are used for input seed selection.

 Distributive collaboration between the fuzzers increases testing efficiency, since the

fuzzers are able to optimize coverage, e.g., by avoiding overlap and by sharing knowledge of the

corpus.

CONCLUSION

This disclosure presents an architecture for continuously running fuzz tests at scale on

physical devices, including on kernel and hardware abstraction layers. Multiple fuzzers run

parallel tests and collaborate in a decentralized manner. Fuzzers share control flow paths and

corresponding code coverages as they are discovered. Fuzzers share syscall sequences that brick

devices as they are discovered, and arrive at an efficient set of sequences that maximize test

coverage. The physical-device based fuzzing architecture described herein enables discovery of

bugs that are not easily discoverable under virtual environments.

8

Yim and Shin: Fuzz testing of smartphones and IoT devices

Published by Technical Disclosure Commons, 2019

REFERENCES

[1] “HIDL HAL fuzzing,” http://newsvideo.su/tech/video/194727 accessed Nov 7, 2018.

[2] Jake Corina and Christopher Salls, “Fuzzing kernel drives with interface awareness”

https://www.blackhat.com/docs/eu-17/materials/eu-17-Corina-Difuzzing-Android-Kernel-

Drivers.pdf accessed Nov 7, 2018.

9

Defensive Publications Series, Art. 2123 [2019]

https://www.tdcommons.org/dpubs_series/2123

http://newsvideo.su/tech/video/194727
https://www.blackhat.com/docs/eu-17/materials/eu-17-Corina-Difuzzing-Android-Kernel-Drivers.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Corina-Difuzzing-Android-Kernel-Drivers.pdf

	Technical Disclosure Commons
	April 08, 2019

	Fuzz testing of smartphones and IoT devices
	Keun Soo Yim
	Ji Won Shin
	Recommended Citation

	tmp.1554735481.pdf.eJcZr

