
Technical Disclosure Commons

Defensive Publications Series

March 27, 2019

Model-based Network Congestion Control
Neal Cardwell

Van Jacobson

Yuchung Cheng

Soheil Hassas Yeganeh

Victor Vasiliev

See next page for additional authors

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Cardwell, Neal; Jacobson, Van; Cheng, Yuchung; Yeganeh, Soheil Hassas; Vasiliev, Victor; Swett, Ian; Jha, Priyaranjan; Seung, Yousuk;
and Wetherall, David, "Model-based Network Congestion Control", Technical Disclosure Commons, (March 27, 2019)
https://www.tdcommons.org/dpubs_series/2086

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/234668968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F2086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F2086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F2086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/2086?utm_source=www.tdcommons.org%2Fdpubs_series%2F2086&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US


Inventor(s)
Neal Cardwell, Van Jacobson, Yuchung Cheng, Soheil Hassas Yeganeh, Victor Vasiliev, Ian Swett, Priyaranjan
Jha, Yousuk Seung, and David Wetherall

This article is available at Technical Disclosure Commons: https://www.tdcommons.org/dpubs_series/2086

https://www.tdcommons.org/dpubs_series/2086?utm_source=www.tdcommons.org%2Fdpubs_series%2F2086&utm_medium=PDF&utm_campaign=PDFCoverPages


Model-based Network Congestion Control 

ABSTRACT 

Computer network congestion control algorithms control the sending rate for flows of 

data from sender network nodes to receiver network nodes. These algorithms attempt to utilize 

network bandwidth capacity efficiently, while keeping network data loss rates low, and 

allocating network capacity between different flows sharing the network in an approximately fair 

manner, or at least avoiding starvation of some flows. In addition, some congestion control 

algorithms attempt to keep network queues short, to reduce queuing delays and further reduce 

loss rates. 

This disclosure describes model-based congestion control, a technique that explicitly 

models the network conditions along the path(s) between senders and receivers. The algorithm 

updates the model using measurements obtained from the packets in the flow it is controlling. 

The algorithm uses those measurements as inputs to update the model and then uses that model 

to control its sending process. This model-based approach can allow the congestion control 

algorithm to achieve higher throughputs and/or lower delays and/or lower data packet loss rates 

than would be achievable by other techniques. 

KEYWORDS 

● Congestion control 

● Rate adaptation 

● BBR 

● TCP 

● QUIC 

● RTP/RTCP 
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● Bandwidth 

● Queuing delay 

● Packet loss 

● Explicit Congestion Notification (ECN) 

BACKGROUND 

Computer network congestion control algorithms control the sending rate for flows of 

data from sender network nodes to receiver network nodes, by deciding whether it is permissible 

to send more data at a given time, and if so, how much data may be sent, and (for some 

algorithms) how fast that data may be sent. These algorithms may run on end host sender nodes, 

inside or in cooperation with end-to-end transport protocols like TCP or QUIC; or they may run 

on switches, routers, or other nodes inside the network, to shape the rate of traffic flow.  

Congestion control algorithms attempt to utilize network bandwidth capacity efficiently, 

while keeping network data loss rates low, and allocating network capacity between different 

flows sharing the network in an approximately fair manner, or at least avoiding starvation of 

some flows. In addition, some congestion control algorithms attempt to keep network queues 

short, to reduce delays and further reduce loss rates. 

Congestion control algorithms generally use signals implicitly or explicitly provided by 

the nodes in the network path. When network packets arrive at a node, e.g. switch or router, 

faster than the node can send the packets over the appropriate next hop link, the node may place 

the packets in a queue if there is free space in its buffer memory, or if there is insufficient free 

space then it may discard ("drop") the packet, resulting in packet loss. The longer such a rate 

mismatch lasts, the deeper the queue may grow, and the longer packets wait in the queue. If the 
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queue or the wait is sufficiently long, some nodes mark packets with an Explicit Congestion 

Notification ("ECN") mark, indicating the presence or extent of queuing. 

Network congestion control algorithms generally use as input signals some subset of the 

information that is produced by that network node queuing and forwarding behavior, including 

one or more of: 

● Packet loss 

● ECN marks 

● Delays caused by time network packets spend in queues and in transit in the network 

● The throughput (or "goodput" or "bandwidth" or "delivery rate") of the data packet flow 

Previous widely-used congestion control algorithms were "model-free," in the sense of 

having no explicit model of the underlying processes in the network. Instead, they predominantly 

relied on a single signal from the list above and had a direct mapping from the value of that 

signal to a change in sending behavior. Most previous algorithms conservatively cut the volume 

of data they allowed in the network to a fraction of the previous level (a "multiplicative 

decrease") during any time interval, e.g. a network round-trip time, during which the signal 

indicated possible excess, e.g. the signal exceeded some target threshold. However, given the 

diversity of physical network paths and network traffic workloads, no single signal or threshold 

reliably corresponds to the point at which the sending behavior of a flow exceeds a sensible rate. 

As a result, model-free congestion control algorithms often tend to overshoot, producing high 

delays and/or packet loss rates, or undershoot, producing low throughput. 

DESCRIPTION 

This disclosure describes model-based congestion control, a technique for computer 

network congestion control algorithms to control the traffic a sender transmits over a network by 
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having the algorithm maintain an explicit model of the processes inside the network path (or 

paths) between a sender node and a receiver node.  

Example systems using this technique can be structured as depicted in Fig 1. The 

algorithm uses inputs gathered from measurements derived from network traffic to maintain an 

explicit model of the network path. The algorithm then implements a state machine to use the 

model to inform its decisions about how to set one or more control parameters that govern the 

sending process.  

 

Fig. 1: Structure of an example model-based network congestion control 

Algorithm Inputs: Network Traffic Measurements  

A model-based congestion control algorithm updates its explicit model of the network 

path using as inputs measurements derived from the network traffic flow it is controlling. These 

measurements can include, but are not necessarily limited to, one or more of the following: 

1. Network data delivery rate (achieved throughput, "goodput," or "bandwidth"). 

2. Round-trip time ("RTT") delay. 

3. One-way delay from sender to receiver. 

4. Data packet loss. 
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5. Explicit congestion notification (ECN) marks on data packets. (ECN marks are set by 

routers, switches, or other nodes along the network path when they experience 

congestion, e.g., a queue size over a configured threshold. The mark is echoed by the data 

receiver in acknowledgment packets it sends to the sender.) 

The algorithm collects and processes these measurements periodically to update its model. The 

algorithm may process the updates at one or more of the following times: on every incoming 

packet, on some multiple or fraction of a network round trip, on time scales measured by elapsed 

time, or triggered by network, traffic, or state machine events. 

Network Path Model 

A model-based congestion control algorithm uses the aforementioned network 

measurements as inputs to dynamically update an explicit model of the network path, and then 

uses that model to control the sender's network sending process. Using the model of the network 

path can allow the congestion control algorithm to achieve higher throughputs and/or lower 

delays and/or lower data packet loss rates than would be achievable by other techniques. 

The dynamic model parameters estimating characteristics of the network path(s) traveled 

by the flow can include one or more of the following, as well as potentially other parameters: 

1. Bottleneck bandwidth available to the flow: the estimated maximum rate at which the 

network can deliver data for the flow without incurring any additional queuing or loss of 

data packets. In an example method to implement this technique, the model estimates this 

parameter by taking bandwidth samples computed as the average delivery rate over the 

time scale of one network round-trip, and using the maximum of all such bandwidth 

samples over the last R round trips.  
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2. Round-trip propagation delay: the estimated minimum round-trip time delay for packets 

traveling over the network path. This is the sum of (a) the time required for a data packet 

to travel from a sender to a receiver, and (b) the time required for a packet 

acknowledging that data packet to travel from the receiver to the sender. The minimum of 

such delays would reflect the minimal (e.g., 0) queuing delay experienced at each 

network node along the path. In an example method to implement this technique, the 

model estimates this parameter by taking round-trip time ("RTT") samples for each data 

packet by computing each RTT sample as the time elapsed between the transmission of a 

data packet and its acknowledgment, and then using the minimum of all such RTT 

samples over the last S seconds. 

3. In-flight capacity available to the flow: the estimated maximum volume of 

unacknowledged in-flight data from the flow that should be held in transit in the network 

between the sender and receiver. Above this amount, data packet queues or data packet 

loss rates are estimated by the algorithm to be unacceptably high. In an example method 

to implement this technique, the model estimates this parameter by examining the time 

interval between when each data packet is sent and an acknowledgment for the data 

packet is received. The sender records with each sent data packet the amount of data, D, 

that it estimates was in flight at the start of that interval, and computes the data packet 

loss rate and data packet ECN mark rate over that interval. When it finds an interval 

where the loss rate and ECN mark rate were both below the corresponding configured 

thresholds for each rate, it ensures its estimate of this capacity parameter is at least as 

high as D. When it is raising the amount of data in flight, and finds either the loss rate or 
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ECN mark rate exceeds the configured threshold, it lowers its estimate of this capacity 

parameter to D. 

4. Degree of network aggregation: the estimated degree to which data and/or 

acknowledgment packets have recently been aggregated or batched in the network path. 

In an example method to implement this technique, the model estimates this by 

examining at each point in time the amount of excess data recently delivered that was 

beyond the amount that was expected to be delivered given the current bandwidth 

estimate (1), and then using the maximum of all such excess data calculations over the 

last A round trips. 

The model may maintain a value for each parameter over some time scale, where the time 

scales may be different for each parameter. In addition, for one or more parameters, the model 

may maintain an estimate over multiple time scales simultaneously, e.g., both a short-term 

summary of recent values and a longer-term estimate composed using a longer history. 

The algorithm updates the model to adapt to changes in the network, the routes used by 

the network, or the traffic flowing over the network. The algorithm updates the model by 

adjusting model parameters over time, using mathematical and/or computational functions, 

adapting to events, e.g., including network traffic measurement inputs; the passing of time; 

transitions in the state machine; etc. 

From the model parameters above, the algorithm can derive its key targets and bounds for 

the amount of unacknowledged data to maintain in-flight in the network. In an example method 

to implement this technique, the algorithm may compute the estimated bandwidth-delay product 

("BDP") for the flow as the product of (1) the estimated bandwidth available to this flow, and (2) 

the round-trip propagation delay. Then the algorithm may calculate the target amount of data to 
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maintain ("in flight") inside the network as a function of the BDP that is close to 1.0*BDP; 

similarly the maximum amount of in-flight data may be calculated as a mathematical function 

that is at least as large as the sum of the BDP and (4) the estimated degree of aggregation. Using 

these targets and bounds allows high utilization of network bandwidth while bounding the 

amount of data in flight, which reduces queuing latencies. The algorithm may place an additional 

bound on the maximum amount of in-flight data by bounding this to be no higher than the 

estimated network capacity available to the flow (3). This further reduces queuing latencies and 

packet loss rates. 

State Machine 

 A model-based congestion control algorithm implements a state machine to use its model 

to inform its decisions about how to evolve the sending process over time. The state machine 

varies the sending behavior with several goals. First, it attempts to keep the amount of in-flight 

data high enough to achieve efficient utilization of the network path(s), but low enough to 

achieve low queuing delays and packet loss rates. Second, it attempts to obtain measurement 

samples to feed into the network model, to refresh the model and keep it up-to-date, allowing the 

algorithm to adapt to changes in the network, network routes, or traffic. 

 The state machine explores the path to see if more bandwidth can be achieved by placing 

more data in flight, or if lower queuing delays and loss rates can be achieved by placing less data 

in flight. Inherently, these cannot be achieved simultaneously, so the state machine necessarily 

alternates between increasing the amount of in-flight data by sending faster, and decreasing the 

amount of in-flight data by sending slower. It increases the amount of in-flight data to probe for 

available bandwidth, to inform the estimated available bandwidth (1) and allow higher 
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throughputs. It reduces the amount of in-flight data to reduce queues, to inform the estimated 

round-trip propagation delay (2) and allow lower queuing delays and packet loss rates. 

The state machine may trigger transitions based on a statically pre-configured time 

schedule, potentially scaled by the round-trip, and/or it may trigger transitions based on the 

estimated amount of data in flight in the network relative to the estimated BDP, computed as 

described above. In addition, it may trigger transitions based on recent measurements, such as 

measuring loss rates and/or ECN mark rates cross above configured upper and/or lower tolerance 

thresholds. 

The state machine may also attempt to coordinate some state machine phase transitions 

between flows sharing a network bottleneck. In an example method to implement this technique, 

the state machine may try to periodically reduce the amount of in-flight data to try to empty the 

flow's bottleneck queue, to increase the chance that flows traversing that queue may measure a 

delay sample that more accurately reflects the round-trip propagation delay of their paths. 

Algorithm Outputs: Network Sender Control Parameters 

A model-based congestion control algorithm computes, as a function of its network 

model parameters and state machine variables, a set of outputs that comprise one or more control 

parameters governing the sending process of the sending engine. The sending engine may be 

implemented by the software or hardware implementation of an end-to-end transport protocol 

(e.g. TCP or QUIC); or it may be implemented by the software or hardware of traffic rate control 

mechanisms (traffic shaping or policing) inside any node of the network, including end hosts, 

switches, routers, or other nodes. 

A model-based congestion control algorithm may export as output control parameters 

that include one or more of the following, as well as potentially other parameters: 
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1. The maximum amount of data (or "quantum") that the algorithm should schedule for 

transmission at a single time, in a single transmission decision made by the network 

sender software or hardware. 

2. The maximum sending rate (or "pacing rate") that the sender may currently use. This rate 

specifies a minimum time separation that the sending engine should impose between data 

packet "quanta" (of one or more data packets scheduled in a single decision). 

3. The maximum amount of unacknowledged data to allow "in flight" in the network path 

(or "congestion window"). 

In addition, the algorithm may output, export, or log model parameters for the purposes of 

debugging, troubleshooting, benchmarking, or telemetry for characterizing the performance of 

the network traffic or the network path(s). 

CONCLUSION 

This disclosure describes model-based congestion control, a technique which uses 

network measurements as inputs to maintain an explicit model of the network path between a 

sender node and a receiver node, and then uses that model to generate output parameters that 

control the sender's network sending process. This model-based approach can allow the 

congestion control algorithm to achieve higher throughputs and/or lower delays and/or lower 

data packet loss rates than would be achievable by other congestion control techniques. 
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