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Entropy-Adaptive Filtering 

Abstract: 

This publication describes an entropy-adaptive filtering, which reduces compression 

artifacts for videos of any given complexity and at any given video-encoding bit-rate.  Unlike other 

video filtering designs, the entropy-adaptive filtering minimizes the likelihood of compression 

artifacts by reducing the entropy level of the input video.   
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Background: 

Many mobile videographies generate entropy videos with visible compression artifacts.  

These compression artifacts are a common occurrence in social and media software applications.  

A lack of field depth, a user’s unsteady handling of a user equipment (UE), a user’s fast camera 

motion, high camera noise, the visual complexities of natural scenes, and other factors, often result 

in videos with unnatural sharp details, high degrees of motion, and complex textures.  These 

characteristics help increase video entropy and put a strain on the compression efficiency of 

modern video codecs, which cause many visible artifacts, such as blockiness, pixelation, mosquito 

noise, ringing, color banding, and the like.   

One common unwanted video artifact is blocking, which often occurs at low bit-rates when 

high-frequency components are heavily quantized without considering the correlation to the 

adjacent blocks and results in discontinuities at block borders.  In contrast, at high bit-rates, 

ringing, also known as the Gibbs phenomenon, is the more-prevalent undesired artifact.  Whereas 

the mosquito noise, which is local flickering near the edges of video images, is associated with 

movement.  These are just a few of the many undesired artifacts that software camera developers 

have tried to lower over the years. 

To decrease undesired artifacts, decreasing the entropy level of the input video is beneficial 

in image processing. 
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Description: 

A pre-processing entropy-adaptive filtering helps suppress undesired compression video 

artifacts during encoding, while preserving image details.  The entropy-adaptive filtering meets 

one or more of the following criteria: 

1. The ability to reduce image noise and image entropy. 

2. Low latency and low power to support the capture of high-resolution images. 

3. Adaptivity to scene complexity to preserve image details and minimize artifacts. 

4. Adaptivity to different software application bit-rates. 

5. Adaptivity to support different frame rates and spatial resolutions. 

6. Encoder-adaptivity to support different video encoder implementations with different sets 

of compression tools and features. 

7. Manual tuning of system parameters for custom quality control tuning. 

The entropy-adaptive filtering reduces compression artifacts for videos of any given 

complexity and at any given video encoding bit-rate.  Unlike other video filtering designs, the 

entropy-adaptive filtering minimizes the likelihood of compression artifacts by reducing the 

entropy level of the input video.   

Leveraging non-linear spatial-temporal filtering1, the entropy-adaptive filtering offers both 

noise reduction and entropy reduction properties, while preserving important image details.  As a 

result, the entropy-adaptive filtering may also function as a video denoising filtering. 

  

4

Ehmann et al.: Entropy-Adaptive Filtering

Published by Technical Disclosure Commons, 2019



Figure 1 illustrates a system design overview of the entropy-adaptive filtering. 
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Figure 1 

 As shown in Figure 1, the system design of the entropy-adaptive filtering may include the 

following main components: 

1. Gaussian pyramid generation, which generates multi-scale images. 

2. Laplacian pyramid generation, which also generates multi-scale images. 

3. Alignment (or motion compensation) to perform motion-compensated temporal filtering. 

4. Distortion estimation to predict the input video frame distortion level. 

5. Blockiness estimation to predict the likelihood of blockiness of the input video frame. 

6. Entropy control to relay proper feedback information to enable entropy-adaptive filtering. 

7. Temporal filtering for each Laplacian pyramid scale level. 

8. Entropy shrinkage to apply spatial filtering on Laplacian images. 

9. Pyramid collapse to merge each filtered Laplacian level coefficient. 

10. Parameter training and tuning control (not explicitly shown). 

As shown in Figure 1, for each incoming (or input) video frame, a Gaussian pyramid and 

a Laplacian pyramid is applied to decompose the frame in multi-scale levels.  Then, the Gaussian 

pyramid is used for temporal alignment with previously buffered video frames.  In addition, the 
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Gaussian pyramid may also be used for temporal noise estimation for each pyramid level, which 

is usually performed offline.  To analyze the image for proper entropy filtering, the system design 

performs a distortion estimation and a blockiness estimation on the Laplacian pyramid.  Moreover, 

entropy controls combine this analysis with an external feedback from video encoders and 

cameras with parameters, such as average frame quantization parameters (QP), bit-rate, lux index, 

and the like to create proper entropy-filtering parameters.  Based on the computed filtering 

parameters, temporal noise estimation, and the alignment results, the system design applies 

temporal filtering on the Laplacian pyramid.  To further remove non-perceptual details and lower 

compression artifacts, the system design applies added spatial filtering on the Laplacian pyramid 

using entropy shrinkage.  Finally, as shown in Figure 1, the system design collapses back together 

the Laplacian and the Gaussian pyramids to create the filtered video frame output. 

 In a more generalized implementation, one may view the entropy-adaptive filtering system 

as a filter that adjusts according to the input video frame and the encoder feedback, as illustrated 

in Figure 2. 
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Below is a high-level overview of the main components of the system design of the 

entropy-adaptive filtering, as shown in Figure 1. 

Gaussian and Laplacian Pyramid Generation 

 Like in a temporal filter1, at time t, the system design decomposes each frame into a 

Gaussian pyramid and a Laplacian pyramid.  The system design’s alignment uses the Gaussian 

pyramid to compute a displacement map used for motion-compensated temporal filtering, while 

the temporal filtering and the entropy filtering process the Laplacian pyramid.  Instead of the 

Gaussian and the Laplacian pyramid generation, in an alternative implementation, the system 

design may use other multi-scale analyses, such as a steerable pyramid, a wavelet, a curvelet, or a 

ridgelet transformation. 

Alignment (or Motion Compensation) 

 The alignment stage aligns each Laplacian level from the earlier video frame to the current 

video frame to perform temporal filtering.  Using the Gaussian pyramid in a hierarchical manner, 

the system design computes a displacement map.  One implementation of motion estimation is to 

use a fast-optical flow method or an optimization of such method1, 2. 

Distortion Estimation 

 The goal of entropy filtering is to reduce distortion below a specified threshold to decrease 

the likelihood of compression artifacts.  The distortion for a given Laplacian image at a level l is 

approximated by using Eq. 1.  

�� = ��������	2�	�  (Eq. 1) 

where ��	 is the average energy per sample of the Laplacian image or patch, R is the total bit-rate 

allocated to the frame, �� is the estimated number of bits per sample that are applied at each level, 

and ���� is a weak function of R, which approaches one (1) as R goes to zero (0), and fast-
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approaches a constant ��	 as the bit-rate R  increases.  The values of ���� and ��	 depend on the 

encoder’s coding method.  The total estimated distortion of the video frame �� is calculated using 

Eq. 2. 

�� = ∑ ��������   (Eq. 2) 

where �� represents a distortion at a Laplacian pyramid level l.  

Eq. 2 shows that decreasing the average energy at each Laplacian level achieves a reduction 

in the distortion ��. 

One drawback of Eq. 1 is that it does not account for motion-compensated coding.  To this 

end, the system design may use Eq. 3 to estimate the distortion of a motion-compensated coded 

video signal using the residual errors �� obtained during the alignment stage. 

�� = �������	2�	�  (Eq. 3) 

where ��	 is the variance of residual errors from motion-compensated video coding.  Using Eq. 2 

and Eq. 3, the system design may estimate the distortion of the input video frame by using Eq. 4. 

�� = ������, ���  (Eq. 4) 

 When the target video encoder supplies the quantization parameter (QP) information, the 

system design may use it to estimate the distortion of an 8-bit video frame using Eq. 5. 

��� = 	  !
��"#$∙#$&'#$()   (Eq. 5) 

where *�� and +�� represent model parameters that help estimate the distortion using QP. 

 Nevertheless, QP information feedback often suffers from one or more frame delays 

depending on the system design constraints.  In the cases when the exact QP information value for 

the current frame is not available, the system design estimates the current QP information using 

past QP information feedback, as shown in Eq. 6. 
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,-. �/� = ∑ 0��12�3 �4�,-�/ − 4�  (Eq. 6) 

where K represents the windowed sample size, t represents the current time, and d represents the 

expected feedback delay.   

 The system design may also estimate the QP information using an autoregressive-moving-

average (ARMA) model. 

Blockiness Estimation 

For low bit-rate videos, blockiness is often a more-dominant artifact compared to blurring 

artifacts.  Therefore, the system design places many constraints to minimize blockiness.  To 

determine the likelihood of blockiness, the system design uses feedback signals.  Particularly, the 

system design uses the spatial nonuniformity in the background luminance (or texture masking), 

and the average background luminance surrounding the artifact (or luminance masking). 

Blockiness most-often occurs on a flat region or a slow-varying gradient region of a video.  

To measure the flatness of the texture, the system design may measure the high-frequency response 

of an input image, which is already available in the lower Laplacian levels.  To determine whether 

a patch or a frame has a visible flat region 67�89:;<<, the system design calculates the ratio between 

the number of Laplacian samples whose response value falls below a set threshold number of 

samples and the total number of samples.  Alternatively, the system design may divide the 

Laplacian level into patches.  For each patch, it calculates the median magnitude (absolute value) 

of the responses.  In this alternative approach, 67�89:;<< is defined as the ratio between the number 

of the patches whose median value falls below a set threshold value and the total number of 

patches.  In another implementation, instead of using Laplacian images, the system design may 

apply an edge filter or a high-pass filter to calculate 67�89:;<<.   
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Regardless of how the system design calculates 67�89:;<<, it calculates the probability of 

blockiness due to texture masking -9;=9>�;�+?@A4��BCC� by using Eq. 7.   

-9;=9>�;�+?@A4��BCC� = D9;=9>�;B�EFGHFIJGKL"FMGNN    (Eq. 7) 

where +9;=9>�; and D9;=9>�; are empirical parameters that relate 67�89:;<< to -9;=9>�;�+?@A4��BCC�. 

For luminance masking, blockiness is often more visible in a dark region than a bright 

region.  The system design calculates the average luminance value at any of the Gaussian pyramid 

levels or directly from the highest Gaussian pyramid level.  Using the property of luminance 

masking, the system design calculates the probability of blockiness -�>OP:8:Q;�+?@A4��BCC� using 

a polynomial or exponential model, such as the one in Eq. 8. 

-�>OP:8:Q;�+?@A4��BCC� = RSTUG"MV WXIU ,             �Z  0 < ]O;8: <  �̂>O�_�>O��]O;8:   −  �̂>O�`IU ,   @/ℎBbc�CB   (Eq. 8) 

where ]O;8:is the average luminance for a given patch or image frame, �̂>Ois the average 

luminance value with peak response, and _�>O, �̂, 0�>O, and d�>O are empirical parameters that 

control the degree of luminance masking. 

Alternatively, the system design may consider only dark scenes to lower the likelihood by 

evaluating a camera’s lux index.  In this alternative, the system design combines both the texture 

and the luminance masking effects and supplies the likelihood of blockiness -�+?@A4��BCC�, as 

detailed in Eq. 9. 

-�+?@A4��BCC� = -9;=9>�;�+?@A4��BCC� ∙ -�>OP:8:Q; �+?@A4��BCC�  (Eq. 9) 

Also, the system design may consider either the texture effect or the luminance masking 

effect, separately. 

  

10

Ehmann et al.: Entropy-Adaptive Filtering

Published by Technical Disclosure Commons, 2019



Entropy Feedback Signal and Control 

The system design includes an entropy-adaptive filter, which relies on feedback signals to 

determine the degree of filtering applied to the filtered video frame output.  The ability to react 

according to the feedback enables a rate-adaptivity and a content-adaptivity for the system design.  

There are two types of feedback signals — intrinsic and extrinsic.  Intrinsic feedback signals are 

the alignment errors, a distortion estimation, and the Laplacian and the Gaussian images.  In 

contrast, extrinsic feedback signals originate from the outside of this system design from sources, 

such as video encoders, camera capture systems, gyroscope sensors, and other parts of the camera 

system. 

Temporal Filtering 

Temporal filtering1 is one way to reduce the entropy level of a video for better compression 

efficiency.  Not only can it remove the inherent noises generated by digital sensors during capture, 

but it also allows the removal of any temporal deviation between successive frames that may not 

be visible by a viewer.  One way to implement a temporal filter is the use of an infinite impulse 

response (IIR) filter, which is robust to alignment error artifacts, such as ghosting, unwanted 

blending, or excessive blurring1.   

The IIR filter can boost high-frequency components to restore high-frequency features, 

while keeping the denoising strength.  To perform IIR filtering, the system design may divide each 

video frame into patches.  In addition, among other strategies, the system design may separately 

calculate the interpolation weight between the current frame and the earlier filtered frames for each 

patch in each Laplacian pyramid level. 
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One strategy is to define the temporal smoothing, as outlined in Eq. 10. 

e�� �f� = ωQ� eQ� �f� + i7� �e8� �f� + ] ∙ ej� �f��  (Eq. 10) 

where e�� �f� is the temporal filtered output of the Laplacian output at level ?  and at pixel location 

p, eQ� �f� is the Laplacian output of the current video frame, e8� �f� is the previous filtered output 

after alignment application, ej� �f� is the difference between eQ� �f� and e8� �f�, ωQ�  is the filtering 

weight of the current frame, i7�  is the filtering weight of the previous aligned frame, and I is the 

interpolation factor between the current frame and the previous aligned frame. 

 The interpolation factor I lies in the range of [0, 1], where a higher value of I indicates a 

lower contribution from the previously aligned frame — differently said, a lower smoothing effect.  

To facilitate entropy-adaptive filtering, I is selected by choosing interpolation weights, such as ]8 

based on the alignment error, ]j based on the expected camera noise and the observed pixel 

differences, and ]k based on the current energy or the distortion level of the Laplacian pyramid 

encoded bit-rate.  Eq. 11 shows the relation between the interpolation factor I and the various 

interpolation weights ]8, ]j, and ]k. 

] = max �]8, min�]j, ];��  (Eq. 11) 

If the alignment confidence is low, the system design applies a high interpolation factor or 

a minimal interpolation weight ]8 to avoid an interpolation artifact propagation.  Otherwise, the 

system design adjusts the interpolation factor according to the camera noise or the compression 

distortion.  The interpolation weight ]j depends on the observed pixel differences and the expected 

camera noise level.  The sensor noise calibration may estimate the expected camera noise level 

and accounts for the noise impact from each image processing stage (e.g., color space conversion, 

tone mapping, gamma correction).  In addition, the system design may express the interpolation 

weight ]j using a Wiener Filter.   
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For faster computation and reduced sensitivity to over-smoothing, however, the system 

design may express the interpolation weight ]j using a sigmoid filter, as shown in Eq. 121. 

];�f� = �
�q;r�stu �u�srU�u��  and  ��f� = 1 + 09�1 − B�w$∙VF�  (Eq. 12) 

where ��f�, in this case, depends on �� instead of the camera noise, and 09 and 9̂ determine the 

sensitivity of the interpolation factor relative to the distortion level and the level of pixel 

differences. 

Entropy Shrinkage 

The entropy-adaptive filtering uses a technique called shrinkage or soft-coring.  The soft-

coring technique suppresses the small-value coefficients of each Laplacian level to near zero (0), 

while keeping the large-value coefficients by using a scale factor, as detailed in Eq. 13. 

e<� �f� = ��< ∙ e�� �f� ∙ x1 − Byr|tJ �u�|{N |}N~  (Eq. 13) 

where e�� �f� is the temporal filtered response value at a Laplacian level l, ��< controls the slope at 

the high-value coefficient region at level l, ��< controls the range of small-value coefficient that 

will be suppressed to near zero (0), and _�< controls the tightness of small-value coefficients relative 

to zero (0) so that the relationship |e<� �f�| < �<�  is satisfied. 

 Assuming �O8=�  is the target maximum distortion that the system design aims to keep at a 

Laplacian level l to prevent compression artifacts, then, the average reduction in the Laplacian 

energy is calculated using Eq. 14 and Eq. 15. 

Δ�	 = �*� S�	 − 3U"H
����	r!� , 0W, for �� <  ��   (Eq. 14) 

Δ�	 = �*� � �∙�
∑ ���r(��) ���	 − wU"H�J���	r!��, 0�, for otherwise  (Eq. 15) 
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where �� adjusts for overestimation or underestimation of the perceptual quality relative to 

distortion. 

 When the target video recorder supplies the QP information, the system design uses Eq. 4 

to estimate the distortion of the input video frame.  Subsequently, Eq. 14 and Eq. 15 give way to 

Eq. 16. 

Δ��	 = �*� � �∙�
����	r!� ∑ ���r(��) ���� − �O8=�, 0�, for �� > ���  (Eq. 16) 

In one implementation, instead of using the separated distortion estimations ��, ��, or ���, 

the system design computes the energy reduction Δ��	 as a weighted prediction between Eq. 14, 

Eq. 15, and/or Eq.16.  Furthermore, the system design may weigh differently the respective 

distortions at different regions of the image according to the region of interest.   

Using the estimated energy reduction Δ��	, the system design calculates the corresponding 

soft-coring parameters ��< and ��<.  One strategy for energy reduction is to first suppress small-

value coefficient to zero (0) up to a perceptual threshold ��O8=, which is a manual tunable threshold 

for determining the maximum ��<.  Then, if excessive energy remains, the system design adjusts 

��< to scale the variation magnitude in each Laplacian pyramid level, up to a perceptual reduction 

threshold ��OP:.  Eq. 17 and Eq. 18 show how the system design calculates ��<. 

arg ����N��U"H ��<.    (Eq. 17) 

C�Aℎ /ℎ*/   ∑ ∏�e�� �f� < ��<���� e��	�f� > Δ��	  (Eq. 18) 

where ∏�∙� is an indicator function, and p is the set of all possible pixel locations at a Laplacian 

pyramid level l. 
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If the system design determines that the above constraint is achievable, it sets ��<=��<∗ and 

��< = 1.  In contrast, if the system design determines that the above constraint is unachievable, it 

sets ��<=��O8= and ��< is, then, calculated by the remaining energy, as shown in Eq. 19 and Eq. 20. 

Δ��	� = Δ��	 − ∑ ∏�e�� �f� < ��<���� e��	�f�   (Eq. 19) 

��< = max � j�!�
∑ ∏��J �����N�u�$ �J!��� , ��OP:�  (Eq. 20) 

In one implementation, ��OP: may consider the texture and the luminance masking effect 

to avoid unnecessary smoothing since blockiness and other compression artifacts may not be 

visible in a highly-texturized scene.  In such case, the system design uses Eq. 21. 

��OP: = max ���<O��9�, ��E�2)  (Eq. 21) 

where ��<O��9� defines the lowest reduction ratio that can be applied before over-smoothing 

becomes visible, and ��E�2 defines the lowest reduction threshold that is sufficient for reducing 

blockiness artifacts when accounting for texture and luminance masking effects. 

The system design determines ��E�2 using Eq. 22. 

��E�2 = max �2 − B<'�∙��E��Q2P:;<<�, 0�   (Eq. 22) 

When p(blockiness) is zero (0) then, ��E�2 will be one (1) — implying no high-value 

coefficient reduction.  When f�+?@A4��BCC� > �� �	�<'�  then, ��E�2 will be zero (0) — implying 

maximum high-value coefficient reduction. 

In another implementation, when motion compensation predicts the video without artifacts, 

the system design adds  ��8�P�:
 to prevent excessive smoothing, as shown in Eq. 23. 

��OP: = max ���<O��9�, ��E�2, ��8�P�:�  (Eq. 23) 
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The system design may apply the factor ��8�P�:
 in lieu of applying distortion estimation for 

motion compensation.  One may express ��8�P�:
 as a function of alignment errors using the 

Gaussian pyramid, as shown in Eq. 24. 

��8�P�: = �
8" ¡Mq;'" ¡M∙¢J!&£" ¡M  (Eq. 24) 

The system design may also include other visual and/or artistic factors to impose 

constraints on ��OP: to avoid unnecessary energy reduction or to boost energy in certain sub-band 

levels in the Laplacian pyramid.  These factors may include things like image sharpening, 

background / region-of-interest blurring, etc. 

Pyramid Collapse 

Once the system design applies proper temporal filtering and entropy shrinkage to the 

Laplacian pyramid levels, the system design collapses all levels in the filtered video output frame.  

It is worth noting that the system design, to maintain temporal denoising stability, only stores 

temporally-filtered frames before entropy shrinkage is applied to the temporal infinite input 

response (IIR) filtering  

Parameter Training and Tuning Control 

The system design may make available to the user many system and model parameters for 

manual tuning.  In addition, some of the model parameters, such as parameters from Eq. 1 to Eq. 

4, can also be trained using a video dataset.  Data training enables higher autonomy and adaptivity 

in the system design.  For better performance, the video dataset is collected and encoded using the 

same capture system settings and target video encoder during runtime. 

In summary, unlike other video filtering designs, this entropy-adaptive filtering minimizes 

the likelihood of compression artifacts by reducing the entropy level of the input video.   
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