
Technical Disclosure Commons

Defensive Publications Series

March 04, 2019

Internet of Things Three-Dimensional Printer
System
Ed Coyne

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Coyne, Ed, "Internet of Things Three-Dimensional Printer System", Technical Disclosure Commons, (March 04, 2019)
https://www.tdcommons.org/dpubs_series/1999

https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F1999&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1999&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1999&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/1999?utm_source=www.tdcommons.org%2Fdpubs_series%2F1999&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Internet of Things Three-Dimensional Printer System

Inventor: Ed Coyne

Summary

Aspects of the present disclosure are generally directed to a custom three-dimensional

(3D) printer system that allows for the offloading of timing sensitive operations for performance

by a microcontroller. In particular, the present disclosure is directed to a 3D printer system that

can include multiple classes of processors that are used to perform operations associated with

three-dimensional (3D) printing, thereby showcasing a heterogeneous computing system which

uses two classes of processor to collaborate to solve a complex problem. In particular, the 3D

printer system can facilitate the process of providing 3D printer instructions to a 3D printer.

3D printing can involve use of a 3D model (e.g., a mathematical representation of the

surface of some object) from which a physical, 3D printed object is created. One of the initial

steps in 3D printing involves the use of software (e.g., slicer software) that operates on a

computing device and converts the 3D model into movement instructions that guide the

movement of the printing components of the 3D printer. For example, as part of the 3D printing

process, 3D printers can receive movement instructions in the form of g-code, which is an ASCII

format code that includes movement instructions (e.g., move the printer head from one set of

{x,y,z} coordinates to another set of {x,y,z} coordinates).

Because 3D printers typically use a microcontroller that lacks memory to store a

complete set of movement instructions locally, the movement instructions (e.g., g-code) are

stored on an external storage device (e.g., a solid state drive connected to the 3D printer) or sent

to the microcontroller via a serial connection from an external computing device that transmits

the instructions to the 3D printer.

2

Coyne: Internet of Things Three-Dimensional Printer System

Published by Technical Disclosure Commons, 2019

By contrast, the microcontroller system of the present disclosure is able to more

effectively perform the task of 3D printing by using multiple different classes of processors in

the 3D printing process. In particular, in one example embodiment, a first class of processor in a

microcontroller can perform the low-latency motor control, while a second class of processor

(e.g., that is implementing the Android Things OS), can handle three-dimensional rendering

(e.g., OpenGL rendering). For example, OpenGL (Open Graphics Library) rendering can be used

to render the object being printed and transition (e.g., line by line) from translucent to solid color

as the print progresses (e.g., the object is a 3D rendered progress bar).

By keeping most of the logic on a high-level platform like Android, the proposed systems

and methods make development and debugging much easier, thanks to Android's great tooling

and developer features. Furthermore, the 3D printer processing flow (e.g., from text g-code to

stepper movement commands) can be implemented as a pipeline to allow easy testability and

reconfigurability.

In some embodiments, the multiple processors can be located on a single chip while, in

other embodiments, the multiple processors can be located on different chips and/or different

computing devices. By having a microcontroller and a full SoC on hand, we are able to provide

easy access to networked and cloud based sources of g-code

In some embodiments, the first and/or second class of processor can be implemented as a

real-time subsystem that showcases the flexibility of Android Things. For example, a proto file

can be used as a live buffer for larger than memory prints (e.g., there can be two open handles - a

read head and a write tail).

Thus, aspects of the present disclosure are directed to the operation of a heterogeneous

computing system that can improve the performance of time sensitive operations such as 3D

3

Defensive Publications Series, Art. 1999 [2019]

https://www.tdcommons.org/dpubs_series/1999

printing. Further, the 3D printer system can improve 3D printing performance by interacting with

Internet of Things devices.

Example Figures

`

Fig. 3

Detailed Description

4

Coyne: Internet of Things Three-Dimensional Printer System

Published by Technical Disclosure Commons, 2019

Aspects of the present disclosure are directed to a real-time subsystem for Android

Things that allows offloading of timing sensitive work to a microcontroller that was integrated as

a first class citizen in a SoC (System on a Chip). CNC control and a 3d printer showcase non-

trivial use of this system.

Thus, example embodiments of the present disclosure are directed to a three-dimensional

printer system that allows for offloading the performance of timing sensitive operations to a

separate processor. Further, the device can operate as an Internet of Things (IoT) device within

an IoT environment.

Example embodiments of the proposed system are examples of heterogeneous

computing, where two classes of processors work together to solve a common goal. This allows

the system to do most of the processing on the higher-level system (e.g., inside of an Android

Things application). This provides access to a modern development environment with world-

class debugging, profiling and testing tools.

This further enables keeping the code running on the microcontroller to a minimum. In

one example, the microcontroller code can be a tight loop that simply checks for its next

instruction, executes it, then checks again. Instructions for the microcontroller can be simple,

such as, for example: “Move stepper-motor A 1000 steps at 100hz, Move stepper-motor B 2000

steps at 10hz, etc.”. The microcontroller’s job may simply be to schedule these movements

simultaneously and perform them on time. This makes the microcontroller code very simple and

focused, leaving all of the complexity in the higher-level environment.

The Android application can be responsible for parsing the text-based g-code format,

handling high-level machine controls (e.g., turning components on/off, managing temperatures,

etc.), as well as tracking the machine position in the 3D coordinate space, translating 3D

5

Defensive Publications Series, Art. 1999 [2019]

https://www.tdcommons.org/dpubs_series/1999

movements into steps for the stepper motors, and/or managing acceleration ramp up and ramp

down. Aside from these fundamental jobs, it is easy to experiment with other functions like

mesh-bed leveling, where the system measures the relationship between the print surface and the

moving print head and slightly adjusts the 3D coordinate space to account for the machine being

out of true.

Working in Android gives access to a large ecosystem of existing libraries. OpenGL

enables easy rendering of what the object being printed will look like. Use of Google Drive or

Firebase APIs can enable the addition of cloud integration with only trivial amounts of work.

Similarly, the existing Camera APIs can be used to capture video or timelapses of the print and

share them with the user’s phone.

In some embodiments, the Android application itself can have been architected as a

pipeline. For example, g-code can be taken from a source, either a file that was uploaded to the

printer or from the serial connection on the board. The g-code can then be run through a set of

pipeline stages, each responsible for a single focused step of the transformation from text-based

g-code to specific machine instructions. This architecture allows each pipeline stage to be easily

tested independently so it can be ensured that invariants exist in each stage that other stages can

depend on. Furthermore this allows easy experimentation with different approaches including

trivially swapping one stage for another.

In some embodiments, at the end of the pipeline the instructions are fed into a buffer of

shared memory between the android system and the real-time subsystem running on the

microcontroller. This buffer can be implemented without using locks to limit requirements on the

hardware itself, which allows this approach to be portable to other platforms easily. As each

6

Coyne: Internet of Things Three-Dimensional Printer System

Published by Technical Disclosure Commons, 2019

instruction is processed, the microcontroller can write an acknowledgement back to the Android

system.

After the g-code has been processed into specific movements, it is sent both to a buffer

where it waits until the microcontroller gets to it, as well as being sent to the front-end for

rendering. When the front-end receives the instruction it will render the movement in its

OpenGL coordinate space (e.g., it can be rendered in a translucent grey form). This creates a

solid-looking 3D rendering of the final print. After the microcontroller has processed a given

instruction the front-end will be notified again, at this point it will change the given line from

being translucent grey to a solid color to signify that that movement is complete. This process

creates a 3D progress-bar effect, where the 3d rendering transitions from translucent grey to solid

color line by line as the print proceeds.

Referring to Figure 3, a flow chart illustrating one embodiment of a process 300 for

generating instructions for a 3D printer is illustrated in accordance with aspects of the present

subject matter. The operations of the process 300 can be performed by a computing system

including one or more features of the IoT systems depicted in Figs 1 and 2. Although the

operations of the process 300 are shown and described in a particular order, certain operations

can be performed in a different order or at the same time.

As indicated in Fig. 3, at 302, the computing system (e.g., the 3D printer system) can

generate a 3D printer instruction to send to a microcontroller of a 3D printer. In some

embodiments, the computing system can parse a 3D printer instructions (e.g., the text based g-

code format), handle high-level 3D printer controls (turning components of the 3D printer on or

off and managing temperatures in various components of the 3D printer), track the position of

3D printer components (e.g., mechanical components involved in 3D printing an object) in the

7

Defensive Publications Series, Art. 1999 [2019]

https://www.tdcommons.org/dpubs_series/1999

three-dimensional coordinate space (e.g., {x,y,z} coordinates), translate 3D printer movements

into steps for the stepper motors of the 3D printer, and/or manage acceleration ramp up and ramp

down. Aside from these operations, the 3D printer system can also perform operations associated

with functions including mesh-bed leveling, in which the relationship between the print surface

and the moving print head is measured and the 3D coordinate space is adjusted to account for the

3D printer being out of true.

At 304, the computing system can send one or more 3D printer instructions to the

microcontroller. Towards the end of the 3D printing pipeline one or more 3D printer instructions

are fed into a buffer of shared memory between the 3D printer system and the real-time

subsystem running on the microcontroller. In some embodiments, the buffer can be implemented

without using locks to limit requirements on the 3D printer hardware itself thereby allowing this

approach to be portable to other platforms. After the g-code has been processed into specific

movements, it is sent both to a buffer where it waits until the microcontroller gets to it, as well as

being sent to the front-end for rendering. When the front-end receives the instruction it will

render the movement in its OpenGL coordinate space, it will render it in a translucent grey form.

This creates a solid-looking 3d rendering of the final print.

At 306, the computing system can receive data including an acknowledgement from the

microcontroller. As each 3D printer instruction is processed, the microcontroller can write an

acknowledgement back to the 3D printer system. After the microcontroller has processed a given

instruction the front-end of a computing system used by a user (e.g., a computing device

connected to a display device viewable by a user) can be notified again.

8

Coyne: Internet of Things Three-Dimensional Printer System

Published by Technical Disclosure Commons, 2019

In some embodiments, the 3D printer system can access an ecosystem of existing 3D printer

libraries. For example, OpenGL can be used to render what an object being 3D printed will look

like before the completion of 3D printing.

 In some embodiments, existing Camera APIs can be used to capture video or time lapses

of a 3D print job and shared with a user on the user’s phone. For example, the OpenGL rendering

of the amount of the 3D model that has been 3D printed can be sent to a user’s smartphone every

minute until the 3D print job is complete.

In some embodiments, at this point the image displayed on a display device will change

the given line from being translucent grey to a solid color to signify that that movement is

complete. This process creates a 3D progress-bar effect in which the 3D rendering transitions

from translucent grey to a solid color on a line by line basis as the printing operations proceed.

The devices and flows shown in Figures 1-3 are only examples of how devices including

the 3D printer system can be made and operated. Many other devices, including different devices

can be created according to aspects of the present disclosure.

Referring now to Figure 1, Figure 1 depicts a block diagram of an example IoT

environment according to example implementations of the present disclosure. As illustrated in

Figure 1, in some implementations, the IoT environment includes a plurality of different devices,

each of which can be referred to as an IoT device. An example IoT device can be an intelligent,

environmentally-sensing, and/or network-connected device configured to communicate with a

central server or cloud service, a control device, and/or one or more additional IoT devices to

perform any number of operations (e.g., in response to received commands). IoT devices can, in

some instances, also be referred to as or include “smart” devices and/or “connected” devices.

9

Defensive Publications Series, Art. 1999 [2019]

https://www.tdcommons.org/dpubs_series/1999

Each IoT device can be a stand-alone physical device or can, in some instances, be an

embedded device that is embedded within a larger device or system. Each IoT device can include

electronics, software, sensors, actuators, and/or other components, including various components

that sense, measure, control, and/or otherwise interact with the physical world. An IoT device

can further include various components (e.g., a network interface, antennas, receivers, and/or the

like) that enable the IoT device to send and/or receive data or other information from one or

more other IoT devices and/or to a central system.

In particular, the various IoT devices can be communicatively connected to one another

via one or more communications networks. The networks can be wide area networks, local area

networks, personal area networks, piconets, cellular networks, other forms of networks, and/or

combinations thereof. The networks can be wired and/or wireless. The networks can be private

and/or public. As examples, two or more of the IoT devices can communicate with one another

using a Wi-Fi network (e.g., a home network), Bluetooth, Bluetooth Low Energy, Zigbee, Radio-

Frequency Identification (RFID), machine to machine connections, inductive communications,

optical communications, infrared communications, other communications techniques or

protocols, and/or combinations thereof. For example, an IoT device might communicatively

connect with a first nearby device using Bluetooth while also communicatively connecting with

a second nearby device using Wi-Fi.

In some implementations, each IoT device can have a unique identifier. For example, the

identifier for each IoT device can include and/or be based on an Internet Protocol address

associated with such IoT device, a manufacturer associated with such IoT device, a location at

which such IoT device is positioned, a model number of such IoT device, a functionality of such

IoT device, and/or other device characteristics. In some implementations, a given IoT device can

10

Coyne: Internet of Things Three-Dimensional Printer System

Published by Technical Disclosure Commons, 2019

locate and/or communicate with another IoT device based on its unique identifier. In some

implementations, the identifier assigned to an IoT device can be modified by a user and/or owner

of such IoT device.

In particular, in some implementations, a user can assign one or more identifiers to the

IoT devices within a device topology representation. The device topology representation can

describe and/or organize a group of IoT devices (e.g., based on location with one or more

structures such as one or more homes, offices, vehicles, and/or the like). The identifiers can be

chosen by the user and associated with the respective IoT devices within the device topology

representation. The identifier(s) can include but are not limited to names, nicknames, and/or

aliases selected for the IoT devices by the user. In this manner, the identifiers can be names or

aliases of the respective IoT devices that the user is likely to use when identifying the IoT

devices for requested control or command operations (e.g., “turn on the kitchen lights”).

An IoT device can be mobile or can be stationary. In some implementations, an IoT

device can be capable of autonomous or semi-autonomous motion.

In some implementations, an IoT device can be controlled or perform operations in

response to communications received by the IoT device over a network. For example, an IoT

device can be controlled by a control device that is communicatively connected to the IoT

device. The control device can communicate directly with the IoT device or can communicate

indirectly with the IoT device (e.g., over or using a mesh network). The control device can itself

be an IoT device or the control device can be a device that is not considered part of the IoT

environment. For example, the control device can be a server device that operates as part of

cloud computing system. The commands can be in response to or generated based on a user input

or can be generated without user input.

11

Defensive Publications Series, Art. 1999 [2019]

https://www.tdcommons.org/dpubs_series/1999

Thus, in one example, an IoT device can receive communications from a control device

and the IoT device can perform operations in response to receipt of such communications. The

performed operations can be internal operations (e.g., changing an internal setting or behavior) or

external operations (e.g., interacting with the physical world in some way). The IoT device and

the control device can be co-located or can be remotely located from each other.

As an example, the control device can be or include a user device such as a smartphone,

tablet, computing device that is able to be worn, laptop, gaming console or device, virtual or

augmented reality headset, and/or the like. As another example, the control device can be a

server computing device. As another example, the control device can itself be an IoT device. For

example, the control device can be a so-called “smart speaker” or other home control or

automation device.

In some implementations, a user can interact with a control device (e.g., which can be an

IoT device) to input data into or otherwise control the IoT environment. For example, the control

device can include and execute a software application and/or other software programs that

provide a user interface that enables entry of user input. The software applications can be

executed entirely at the control device or can be web applications where some portion of the

program or functionality is executed remotely (e.g., by a server connected over the Internet) and,

in some implementations, the client-side logic runs in a web browser. Thus, in some

implementations, a web server capable of sending, receiving, processing, and storing web pages

or other information may be utilized.

In some implementations, a cloud service may be used to provision or administer the IoT

devices. For example, a cloud computing system can enable or perform managed and/or

integrated services that allow users to easily and securely connect, manage, and ingest IoT data

12

Coyne: Internet of Things Three-Dimensional Printer System

Published by Technical Disclosure Commons, 2019

from globally dispersed IoT devices at a large scale, process and analyze/visualize that data in

real time, and/or implement operational changes and take actions as needed. In particular, in

some implementations, the cloud computing system can employ a publication subscription model

and can aggregate dispersed device data into a single global system that integrates seamlessly

with data analytics services. An IoT data stream can be used for advanced analytics,

visualizations, machine learning, and more to help users improve operational efficiency,

anticipate problems, and/or build rich models that better describe and optimize the user’s home

or business. The cloud system can enable any number of dispersed IoT device to connect through

protocol endpoints that use automatic load balancing and horizontal scaling to ensure smooth

data ingestion under any condition.

In some implementations, the cloud system can include or implement a device manager.

For example, the device manager can allow individual IoT devices to be configured and

managed securely in a fine- or coarse-grained way. Management can be done through a console

or programmatically. The device manager can establish the identity of a device and can provide

the mechanism for authenticating a device when connecting. The device manager can also

maintain a logical configuration of each device and can be used to remotely control the device

from the cloud.

In some implementations, an IoT device can include an artificial intelligence-based

assistant or software agent. A user can interact with the artificial intelligence-based assistant via

a control device, directly through the IoT device, or any other method of interaction. The

artificial intelligence-based assistant can perform tasks or services based on user input and/or

contextual awareness (e.g., location awareness), including acting as a control device to control

other IoT devices. In some implementations, an IoT device (e.g., an artificial intelligence-based

13

Defensive Publications Series, Art. 1999 [2019]

https://www.tdcommons.org/dpubs_series/1999

assistant on such device) can access information from a variety of online sources (such as

weather conditions, traffic congestion, news, stock prices, user schedules, retail prices, etc.).

The artificial intelligence-based assistant or software agent can be stored and

implemented by a single device (e.g., a single IoT device) or can be spread across multiple

devices and implemented by some (e.g., dynamically changing) combination of such multiple

devices.

In some implementations, an IoT device can include (e.g., as part of an artificial

intelligence-based assistant) one or more machine-learned models that assist in understanding

user commands, determining context, and/or other actions. Example machine-learned models

include artificial neural networks such as feed-forward neural networks, recurrent neural

networks, convolutional neural networks, autoencoders, generative adversarial networks, and/or

other forms, structures, or arrangements of neural networks. Additional example machine-

learned models include regression models, decision tree-based models (e.g., random forests),

Bayesian models, clustering models, linear models, non-linear models, and/or other forms,

structures, or arrangements of machine-learned models. Machine-learned models can be trained

using supervised learning techniques or unsupervised learning techniques. Machine-learned

models can be stored and implemented on the IoT device or can be stored and implemented in

the cloud and the IoT device can leverage the models by communicating with cloud devices.

Feedback or other forms of observed outcomes can be used to re-train models to improve their

performance. Models can be personalized to one or more users or environments by re-training on

data specific to such users or environments.

In some implementations, the artificial intelligence-based assistant can perform

concierge-type tasks such as, for example, making dinner reservations, purchasing event tickets,

14

Coyne: Internet of Things Three-Dimensional Printer System

Published by Technical Disclosure Commons, 2019

making travel arrangements, and/or the like. In some implementations, the artificial intelligence-

based assistant can provide information based on voice input or commands (e.g., by accessing

information from online sources). In some implementations, the artificial intelligence-based

assistant can automatically perform management or data-handling tasks based on online

information and events, including, in some instances, without user initiation or interaction.

In some implementations, a control device (e.g., which may be an IoT device) can

include components such as a mouse, a keyboard, buttons, knobs, a touch-sensitive component

(e.g., touch-sensitive display screen or touch pad), and/or the like to receive input from the user

via physical interaction.

In some implementations, the control device can include one or more microphones to

capture audio signals and the device can process the audio signals to comprehend and respond to

audio commands (e.g., voice commands) provided by a user or by some other device. Thus, in

some implementations, the IoT devices can be controlled based on voice commands from a user.

For instance, a vocalization from a user can be received by a control device. The vocalization can

be a command spoken by a user proximate to the control device. The control device can control

itself and/or one or more of the IoT devices based on the vocalization.

In some implementations, one or more vocalization(s) may be used as an interface

between a user and an artificial intelligence-based assistant. For example, a user may vocalize a

command which the artificial intelligence-based assistant may identify, process, and/or execute

or cause to be executed. The vocalized command may be directed at the artificial intelligence-

based assistant.

As one example, the vocalization may indicate a user desire to interact with or control

another IoT device (e.g., lowering a thermostat setting, locking a door, turning off a light,

15

Defensive Publications Series, Art. 1999 [2019]

https://www.tdcommons.org/dpubs_series/1999

increasing volume, etc.). The artificial intelligence-based assistant may communicate the

command to the desired IoT device which can respond by executing or otherwise effectuating the

user command. As another example, the vocalization can include a user commanding the

artificial intelligence based assistant to perform a task (e.g., input an event into a calendar,

retrieve information, set a reminder, make a list, define a word, read the first result of an internet

search, etc.).

In some implementations, speech recognition or processing (e.g., natural language

processing) can be performed on the vocalization to comprehend the command provided by the

vocalization. For instance, data indicative of the vocalization can be provided to one or more

language models (e.g., machine-learned models) to determine a transcription of or otherwise

process the vocalization.

In some implementations, processing the vocalization or other user input can include

determining one or more IoT devices to control and/or one or more actions to be performed by

the selected IoT devices. For instance, a semantic interpretation of the vocalization (e.g., a

transcript of the vocalization) can be determined using one or more semantic interpretation

techniques (e.g., natural language processing techniques). The semantic interpretation can

provide a representation of the conceptual meaning of the vocalization, thereby also providing an

interpretation of the intent of the user.

In some implementations, the interpretation of the vocalization can be determined based

at least in part on the device topology representation. For instance, the device topology

representation can be accessed to determine the one or more selected IoT devices and/or actions

to be performed. As one example, the device topology representation can be accessed and

compared against a transcription of the vocalization to determine a match between one or more

16

Coyne: Internet of Things Three-Dimensional Printer System

Published by Technical Disclosure Commons, 2019

terms included in the transcription and one or more terms associated with the IoT device

topology representation (e.g., “kitchen lights”). In some implementation, the identity of the

speaker can be ascertained and used to process the vocalization (e.g., such as to process

commands that include possessive modifiers: “brew a cup of my favorite roast of coffee”).

In some implementations, the control device (e.g., which may be an IoT device) can

include a vision system that includes one or more image sensors (e.g., visible-spectrum cameras,

infrared cameras, LIDAR systems, and/or the like) that capture imagery. The device can process

the imagery to comprehend and respond to image-based commands or other input such as, for

example, gesture commands provided by the user. In some implementations, the vision system

may incorporate or perform facial movement identification (e.g. lip reading) capabilities while,

in other implementations, the vision system may additionally or alternatively incorporate hand

shape (e.g. hand gestures, sign language, etc.) identification capabilities. Facial movement and/or

hand shape identification capabilities may allow a user to give commands a control device in

addition or alternatively to voice control.

In some implementations, in response to the image data of the facial or hand gesture, the

control device can determine one or more IoT devices to control and/or one or more actions to be

performed (e.g., by the selected IoT devices). Interpretation of image data that depicts lip reading

and/or sign language may be achieved through any method of image data analysis. The

interpretation can provide a representation of the conceptual meaning of the image data. In this

manner, the interpretation of the image data can provide an interpretation of the intent of the user

in performing the gesture(s).

In some implementations, the interpretation can be determined based at least in part on

the device topology representation. For instance, the device topology representation can be

17

Defensive Publications Series, Art. 1999 [2019]

https://www.tdcommons.org/dpubs_series/1999

accessed to determine the one or more selected IoT devices and/or the action to be performed.

For example, the device topology representation can be accessed and compared against the

image data to determine a match between one or more aspects of the image data and one or more

aspects associated with the IoT device topology representation (e.g., the user may be pointing to

a specific IoT device when providing a voice command or a gesture command).

In further implementations, gaze recognition can be performed on the captured imagery

to identify an object or device that is the subject of a gaze of the user. A user command (e.g.,

voice or gesture) can be interpreted in light of (e.g., as applied to) the object or device that is the

subject of the gaze of the user.

In some implementations, the vision system may be used as an interface between a user

and an artificial intelligence-based assistant. The captured image data may be interpreted and/or

recognized by the artificial intelligence-based assistant.

In some implementations, the selected IoT devices and/or the actions to be performed can

be determined based at least in part on contextual data (e.g., location of user, day of the week,

user data history, historical usage or command patterns, user wardrobe, etc.) For instance, in

response to receiving a command from a user, a location of the user, a time of day, one or more

past commands, and/or other contextual information can be determined. The location can be

determined using various suitable location determination techniques. The location determination

technique can, for example, be determined based at least in part on the control device to which

the user provides the vocalization.

As one example, if the control device is an IoT device that is specified in the device

topology representation, the user location can be mapped to the structure and/or room to which

the control device is assigned in the device topology representation. As another example, if the

18

Coyne: Internet of Things Three-Dimensional Printer System

Published by Technical Disclosure Commons, 2019

control device is a user device not specified in the device topology representation, the user

location can be determined using one or more location determination techniques, such as

techniques using wireless access points or short range beacon devices associated with one or

more IoT devices, and/or other suitable location determination techniques. In some

implementations, the user location can be mapped to one or more structures and/or rooms

specified in the device topology representation. In some implementations, the control device

and/or other IoT devices can also process audio signals and/or imagery to comprehend and

respond to contextual information. As examples, triangulation and/or beamforming techniques

can be used to determine the location of the user based on receipt of the voice command at

multiple different audio sensors. In some implementations, multiple possible user commands or

requests can be disambiguated based on the contextual information.

Further to the descriptions above, a user may be provided with controls allowing the user

to make an election as to both if and when systems, devices, or features described herein may

enable collection of user information (e.g., information about a user’s preferences, a user’s

activities, or a user’s current location), and if the user is sent content or communications from a

server. In addition, certain data may be treated in one or more ways before it is stored or used,

so that personally identifiable information is removed. For example, a user’s identity may be

treated so that no personally identifiable information can be determined for the user, or a user’s

geographic location may be generalized where location information is obtained (such as to a city,

ZIP code, or state level), so that a particular location of a user cannot be determined. Thus, the

user may have control over what information is collected about the user, how that information is

used, and what information is provided to the user.

 Figure 2 provides a block diagram of an example software stack that can be included on

19

Defensive Publications Series, Art. 1999 [2019]

https://www.tdcommons.org/dpubs_series/1999

an IoT device. The software stack shown in Figure 2 is provided as one example only. Various

different IoT devices can have any number of different software and/or hardware configurations

which may be of greater or lesser complexity to that shown in Figure 2.

In some implementations, an IoT device can include and execute one or more computer

applications (also known as software applications) or other computing programs. The IoT device

can execute the application(s) to perform various functions, including collection of data,

communication of data, and/or responding to or fulfilling received commands. In some

implementations, the software applications can be native applications.

In some implementations, the software application(s) on an IoT device can be

downloaded and installed by or at the direction of the user. In other implementations, the

software application(s) can be default applications that come pre-programmed onto the IoT

device. In some implementations, the software application(s) can be periodically updated (e.g.,

via download of update packages). The software application(s) can be closed source applications

or can be open source applications. The software applications can be stand-alone applications or

can be part of an operating system of the IoT device. The software applications can be embodied

in computer-readable code or instructions that are stored in memory and then accessed and

executed or followed by one or more processors of the IoT device.

In some implementations, the software application(s) on an IoT device can be user-facing

applications such as a launcher or a browser. In other implementations, the IoT device does not

include any user-facing applications but, for example, is instead designed to boot directly into

applications developed specifically for the device.

More particularly, in some implementations, an IoT device can include or otherwise be

implemented upon or in conjunction with an IoT platform that includes a number of elements.

20

Coyne: Internet of Things Three-Dimensional Printer System

Published by Technical Disclosure Commons, 2019

The IoT platform can include an operating system. The operating system can, for example, have

been optimized for use in the IoT environments (tuned for faster boot times and/or lower

memory footprint). The operating system and other platform elements may be able to receive

secure and managed updates from the platform operator. The IoT platform can include hardware

that is accessible and easy to integrate.

The IoT platform can also enable application developers to build applications using a rich

framework provided by an operating system software development kit (SDK) and platform

services, including, for example, the same user interface toolkit, multimedia support, and

connectivity application programming interfaces (APIs) used by developers of mobile

applications for larger devices such as smartphones. Applications developed for the IoT device

can integrate with various services using one or more client libraries. For example, the

applications can use the libraries to interact with services such as application deployment and

monitoring services, machine learning training and inference services, and/or cloud storage

services. The applications can use the APIs and/or support libraries to better integrate with

hardware, including, for example, custom hardware. This can include support for peripheral

interfaces and device management. The device can also include a number of native libraries,

including, for example, C/C++ libraries, runtime libraries, core libraries, and/or the like. Updates

to one or more of these components can be deployed over the air and/or automatically when

updates are available.

In some implementations, an IoT device (e.g., the software applications executed

thereby) can utilize APIs for communicating between a multitude of different software

applications, operating systems, databases, libraries, enterprises, graphic interfaces, or any other

component of the IoT environment disclosed herein. For instance, a first software application

21

Defensive Publications Series, Art. 1999 [2019]

https://www.tdcommons.org/dpubs_series/1999

executed on a first IoT device can invoke a second software application via an API call to launch

the second software application on a second IoT device.

In some implementations, the applications can run on a single or variety of operating

system platforms including but not limited to OS X, WINDOWS, UNIX, IOS, ANDROID,

SYMBIAN, LINUX, or embedded operating systems such as VxWorks.

The IoT device can include one or more processors and a memory. The one or more

processors can be any suitable processing device (e.g., a processor core, a microprocessor, an

application specific integrated circuit (ASIC), a field programmable gate array (FPGA), System

on a Chip (SoC), a controller, a microcontroller, etc.) and can be one processor or a plurality of

processors that are operatively connected. The memory can include one or more non-transitory

computer-readable storage mediums, such as RAM, ROM, EEPROM, EPROM, flash memory

devices, magnetic disks, etc., and combinations thereof. The memory can store data and

instructions which are executed by the processor to cause the IoT device to perform operations.

The IoT devices can, in some instances, include various other hardware components as well,

including, for example, a communications interface to enable communication over any number

of networks or protocols, sensors, and/or other components.

In some implementations, the IoT device can include or be constructed using one or more

System on Module (SoM) architectures. Each SoM can be a fully integrated component that can

be dropped directly into a final design. Modules can be manufactured separately and combined

to form the device. In some implementations, the device software can include a hardware

abstraction layer and kernel which may be packaged as a board support package for the modules.

In other implementations, different, non-modular architectures can be used.

22

Coyne: Internet of Things Three-Dimensional Printer System

Published by Technical Disclosure Commons, 2019

Example IoT devices include or can be associated with an air conditioning or HVAC

system, lighting device, a television or other home theater or entertainment system, security

system, automatic door or window locking system, thermostat device, home energy manager,

home automation system, audio speaker, camera device, treadmill, weight scale, smart bed,

irrigation system, garage door opener, appliance (e.g., refrigerator, dishwasher, hot water heater,

furnace, stove, fireplace, etc.), baby monitor, fire alarm, smoke alarm, medical devices, livestock

tracking devices, cameras, beacon devices, a phone (e.g., smartphone), a computerized watch

(e.g., a smart watch), a fitness tracker, computerized eyewear, computerized headwear (e.g., a

head mounted display such as a virtual reality of augmented reality display), other types of

computing devices that are able to be worn, a tablet, a personal digital assistant (PDA), a laptop

computer, a desktop computer, a gaming system, console, or controller, a media player, a remote

control, utility meter, an electronic book reader, a navigation system, a vehicle (e.g., car, boat, or

plane/drone) or embedded vehicle system, an environmental, food, or pathogen monitor, search

and rescue devices, a traffic control device (e.g., traffic light), traffic monitor, climate (e.g.,

temperature, humidity, brightness, etc.) sensor, agricultural machinery and/or sensors, factory

controller, GPS receivers, printers, motor (e.g., electric motor), and/or other suitable device or

system.

The technology discussed herein makes reference to servers, databases, software

applications, and other computer-based systems, as well as actions taken and information sent to

and from such systems. One of ordinary skill in the art will recognize that the inherent flexibility

of computer-based systems allows for a great variety of possible configurations, combinations,

and divisions of tasks and functionality between and among components. For instance, server

processes discussed herein may be implemented using a single server or multiple servers

23

Defensive Publications Series, Art. 1999 [2019]

https://www.tdcommons.org/dpubs_series/1999

working in combination. Databases and applications may be implemented on a single system or

distributed across multiple systems. Distributed components may operate sequentially or in

parallel.

24

Coyne: Internet of Things Three-Dimensional Printer System

Published by Technical Disclosure Commons, 2019

Figures

25

Defensive Publications Series, Art. 1999 [2019]

https://www.tdcommons.org/dpubs_series/1999

Fig. 3

26

Coyne: Internet of Things Three-Dimensional Printer System

Published by Technical Disclosure Commons, 2019

	Technical Disclosure Commons
	March 04, 2019

	Internet of Things Three-Dimensional Printer System
	Ed Coyne
	Recommended Citation

	Microsoft Word - DOCS-#1902399-v1-GGL-1721-DPUB_DefensivePublication

