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Parallelizing tests with pessimistic speculative execution 

ABSTRACT 

Fuzzy testing or fuzzing is a technique for finding software vulnerabilities. Fuzzing 

works by feeding quasi-random, auto-generated input sequences to a target program and 

searching for failures. Fuzzers find inputs that trigger bugs; however, understanding those bugs 

is easier when extraneous data is removed to the extent possible. Extraneous data is removed by 

bisection, which is typically a serial procedure, e.g., doesn’t advance without knowing the result 

of the previous step. This makes test case optimization slow, sometimes taking hours to complete 

while CPU cores sit idle. 

This disclosure describes techniques that parallelize the bisection procedure, e.g., by 

speculatively executing test cases steps ahead of the current position of the bisection procedure. 

Test results often become known by the time the bisection procedure reaches a certain step, 

which substantially accelerates testing. 
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BACKGROUND 

Fuzzy testing (or simply, fuzzing) is a technique for finding software vulnerabilities. 

Fuzzing works by feeding quasi-random, auto-generated input sequences to a target program and 

searching for failures. Fuzzers find inputs that trigger bugs; however, understanding those bugs 

is easier when extraneous data is removed to the extent possible. This removal of extraneous data 

is called test-case minimization or delta debugging.  

 

Fig. 1: Bisection to optimize test cases 

As shown in Fig. 1, optimization tools typically use a bisection procedure to simplify test 

cases. For example, if test cases at level 102 pass, then test cases at level 104 are tested. Test 

cases at level 104 that pass lead to the procedure to move on to testing at level 106 the children 

of the passing nodes of level 104, and so on. Bisection is an inherently serial process, e.g., it 

doesn’t advance without knowing the result of the previous step. This makes optimization slow, 

sometimes taking hours to complete while CPU cores sit idle. 
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DESCRIPTION 

 

Fig. 2: Parallelizing test-case optimization using speculative execution of future steps 

 Fig. 2 illustrates accelerating test-case optimization using speculative execution of future 

steps, per techniques of this disclosure. A binary tree (200) of possible bisection steps is built. In 

Fig. 2, the bisection procedure is presently at level 202. Even before results of the execution at 

202 are known, idle compute cores are used to test steps further down the binary tree e.g., 206b-

c, 208b-c, etc. Nodes undergoing such speculative execution are shaded in grey. In many cases, 

such execution leads to test results of lower-level nodes being already known by the time the 

bisection procedure reaches them. For example, if the test case 202 passes, and 

● if test case 206b fails, then tests of its children are obviated, even before the bisection 

procedure reaches 206b; 

● if test cases 206b and 204a pass, then the bisection procedure can move on to the children 

of 206b; 

● if test cases 204a, 206a, and 208b pass, then the bisection procedure can move on to test 

case 208a and the children of test case 208b; etc. 
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 The aforementioned procedure is referred to as pessimistic since real workloads are 

characterized by long series of consecutive failures. The assumption made is that tests are going 

to fail; the techniques described herein speculatively follow the failure path until proven wrong.  

 In this manner, the techniques of this disclosure leverage idle compute cores to test 

software in a distributed, e.g., multi-threaded, manner leading to superior test performance, 

scalability, and testing efficiency.  

CONCLUSION 

This disclosure describes techniques that parallelize the test-case optimization procedure, 

e.g., by speculatively executing test cases steps ahead of the current position of the optimization 

procedure. The techniques of this disclosure leverage multiple compute cores to test software in 

a distributed, e.g., multi-threaded, manner leading to superior performance, scalability, and 

testing efficiency. 
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