
Technical Disclosure Commons

Defensive Publications Series

January 28, 2019

ZERO-TOUCH BOOTSTRAP OF A
NETWORK CONNECTED DEVICE
Owen Friel

Eliot Lear

Jerome Henry

Stephen Orr

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Friel, Owen; Lear, Eliot; Henry, Jerome; and Orr, Stephen, "ZERO-TOUCH BOOTSTRAP OF A NETWORK CONNECTED
DEVICE", Technical Disclosure Commons, (January 28, 2019)
https://www.tdcommons.org/dpubs_series/1915

https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F1915&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1915&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1915&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/1915?utm_source=www.tdcommons.org%2Fdpubs_series%2F1915&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 5786

ZERO-TOUCH BOOTSTRAP OF A NETWORK CONNECTED DEVICE

AUTHORS:
Owen Friel
Eliot Lear

Jerome Henry
Stephen Orr

ABSTRACT

Techniques are presented herein that allow devices to automatically discover the

correct enterprise wireless network to connect to, and securely onboard against that

network, without manual provisioning of network information or credentials on the devices.

This enables secure deployment of devices at scale on enterprise wireless networks. Minor

enhancements to Institute of Electrical and Electronics Engineers (IEEE) 802.11 are

described to enable this flow. Unlike Wi-Fi Alliance® Device Provisioning Protocol (DPP),

the techniques presented herein are lightweight and do not include additional messaging

overhead between the client device (STA) and Access Point (AP).

DETAILED DESCRIPTION

When network connected devices (e.g., Internet of Things (IoT) devices/Things,

Collaboration endpoints, etc.) are powered up for the first time, initial onboarding against

secure wireless networks enforcing authentication (e.g., Institute of Electrical and

Electronics Engineers (IEEE) 802.1x authentication) is generally a laborious manual

process. In particular, in the case of 802.1x, a Service Set Identifier (SSID) string and an

authentication credential must be provisioned on the device. This is a significant “Total

Cost of Ownership” and “User Experience” issue for even a small number of devices, and

simply does not scale for large numbers of devices.

The newly published Wi-Fi Alliance Device Provisioning Protocol (DPP)

specification attempts to address this problem by defining how a Configurator application

can enable a device to discover and connect to a Wi-Fi® SSID. In particular, the Wi-Fi

Alliance DPP allows for the Configurator application to pass two main categories of

credentials to the device, namely:

1. A password or passphrase which can be used to connect to a wireless network

that is enforcing a password based Authentication and Key Management (AKM) of

2

Friel et al.: ZERO-TOUCH BOOTSTRAP OF A NETWORK CONNECTED DEVICE

Published by Technical Disclosure Commons, 2019

 2 5786

either Simultaneous Authentication of Equals (SAE) or Pre-Shared Key (PSK), and

advertising this in the Robust Security Network Element (RSNE) Beacon and Probe

Responses; or

2. A DPP Connector object which can only be used to connect to a wireless network

that is enforcing the newly defined "dpp" Authentication and Key Management

(AKM), which is advertised via a Wi-Fi Alliance Organizationally Unique

Identifier (OUI) in the RSNE.

Neither of these approaches are suitable for connection to enterprise networks

enforcing 802.1X (and therefore rejecting the use of PSK, SAE or a particular "dpp"

AKM). The techniques presented herein solve the problem of IoT dynamic provisioning

in the context of an enterprise environment.

More specifically, the techniques presented herein define an enhancement to 802.11

Authentication frames that enables client devices (STAs) to onboard securely against an

802.11 network that is enforcing 802.1X authentication while providing proof to the STA

that the network has knowledge of the STA's IDevID public key. Additionally, the

techniques presented herein protect disclosure of the STA's IDevID public key to rogue

802.11 networks.

In accordance with the techniques presented herein, an 802.11 Proof of Knowledge

(POK) Authentication Algorithm is defined that is used by the STA to verify that an Access

Point (AP) knows the STA's IDevID public key prior to attempting to connect to the AP.

This also enables the device to protect its IDevID public key from exposure to rogue

networks.

In addition, the techniques presented herein also describe multiple potential

mechanisms for how Bootstrapping Remote Secure Key Infrastructures (BRSKI) may be

integrated into the device onboarding flow. The techniques presented herein do not rely on

DPP, and do not use any of the newly defined messages in DPP. Moreover, the techniques

presented herein do not rely on the presence or use of a helper application on a mobile

device or tablet in order to bootstrap the STA, and may be fully integrated into the AP.

The network enforces an Extensible Authentication Protocol (EAP) Transport Layer

Security (TLS) method such as EAP-TLS, EAP Tunnel Extensible Authentication Protocol

(EAP-TEAP) or any EAP method that establishes a TLS connection.

3

Defensive Publications Series, Art. 1915 [2019]

https://www.tdcommons.org/dpubs_series/1915

 3 5786

Figures 1A-1C below collectively illustrate a call flow in accordance with

embodiments presented herein. Details of the call flow shown in Figures 1A-1C are

described further below.

4

Friel et al.: ZERO-TOUCH BOOTSTRAP OF A NETWORK CONNECTED DEVICE

Published by Technical Disclosure Commons, 2019

 4 5786

5

Defensive Publications Series, Art. 1915 [2019]

https://www.tdcommons.org/dpubs_series/1915

 5 5786

In Step 1 of the call flow, the administrator (admin) provisions the STA IDevID

public key on the network. The admin may optionally provision the STA Media Access

Control (MAC) address on the network. This may be done in advance of the STA being

powered up, for example, when the STA arrives in shipping. This step may be done in

batch for a large number of expected STAs, and prevents unauthorized STAs from

automatically joining the network.

Note that the STA IDevID and, optionally the MAC address, may be provisioned

on any suitable element in the network. For example, they could be configured on the

Authentication, Authorization and Accounting (AAA) server or on the Wireless Local Area

Network (LAN) Controller (WLC) elements. In certain implementations, this phase can

6

Friel et al.: ZERO-TOUCH BOOTSTRAP OF A NETWORK CONNECTED DEVICE

Published by Technical Disclosure Commons, 2019

 6 5786

be performed against authentication databases. The network element can then provide this

information to the required set of APs when necessary.

Two embodiments for initial discovery of the AP are described below:

Embodiment 1:

In Step 2 of the call flow, the network management system has created a Bloom

filter containing hashes of the identities of all STAs that it wants to claim. The identities

are a hash of the STA's IDevID public key. Thus, the Bloom filter bits are set based on

hashing the STA identities, where the identities are in turn a hash of the STA's public key.

The Bloom filter bitmap is included in the Beacon frame.

If the STA sees a Bloom filter match then it knows that the AP is likely attempting

to claim it.

Embodiment 2:

In this embodiment, the Beacon at step 2 of the call flow does not contain a specific

identifier helping the STA realize that the AP is trying to claim it. In Step 3 of the call

flow, the STA sends a Probe Request with a suitable flag set indicating that it wants to

enroll using POK of its IDevID.

The “alt Probe Request” section of the call flow provides two options. In the first

option, the AP must know the MAC address and map the MAC address to the STAs

H(public key). In the second option, the STA simply sends its H(public key) to the AP.

This avoids the overhead of the network having to be pre-provisioned with the MAC

address of the STA, or a map of MAC address to public key. There is also no real risk in

the STA sending its H(public key) to the wrong AP in step 3, as none of these packets are

encrypted so any rogue AP could sniff the H(public key) in step 4.

If the AP recognizes the MAC address of the STA, in Step 4 of the call flow, the

STA sends a Probe Response which includes a hash of the STA's IDevID public key. In

an alternative embodiment where the AP does not contain all the IDevID public keys, the

AP can reply with a 'hold' flag while it retrieves the public key matching the STA MAC

address, and then send a gratuitous Probe response with the hash.

At Step 5 of the call flow, the STA knows that the AP wants to claim it as either:

(i) the AP advertised a Bloom filter with matching bits set, or

7

Defensive Publications Series, Art. 1915 [2019]

https://www.tdcommons.org/dpubs_series/1915

 7 5786

(ii) (ii) the AP replied with a Probe Response including a hash of the STA's

public key

In Step 5, the STA sends an 802.11 Authentication message indicating the

algorithm type of POK. The STA includes a random nonce in the request.

On receipt of the message, the AP derives a shared secret via a Diffie Hellman (DH)

calculation over a finite field (and it could be discrete log or elliptic curve) using the AP's

private key and the STA's public key. The AP uses the DH shared key and a suitable key

derivation function to derive shared encryption keys.

It should be noted that although the IDevID public key is used for the initial

exchange, the purpose is to create a tunnel with a proof that the infrastructure side has

knowledge of the device keying material. As such, alternate options (e.g., pre-set PSK,

other form of public key exchanges, or a suitable Password Authenticated Key Exchange

(PAKE) algorithm (e.g., PAKE by Juggling (JPAKE) or Secure Remote Password (SRP))

may also be applicable.

The AP uses a suitable encryption algorithm to encrypt the following data:

- the STA's nonce received in the Authentication message

- the public key of the EAP server that will be enforcing 802.1x EAP TLS

authentication

In Step 6 of the call flow, the AP replies with an 802.11 Authentication message

indicating the algorithm type of POK. The AP includes its DH public key, the encrypted

data, and the hash of the STA's public key.

On receipt of the message, the STA derives the same DH shared secret and

encryption keys, and verifies that it can decrypt the ciphertext. The STA verifies that the

nonce received from the AP matches the nonce it originally sent. At this point, the STA

has now verified that the AP knows its public key, and the STA proceeds to connect to the

AP and initiate the 802.1X authentication. Steps 7 and 8 of the call flow generally illustrate

a standard 802.11 Association exchange.

The STA has also received the public key of the EAP server for the network that

has completed POK of its IDevID public key. At this stage there is still no secure encrypted

channel between the STA and the AP. As such, a malicious attacker could still try to hijack

the connection. However, when establishing the 802.1X EAP TLS tunnel, the STA uses

8

Friel et al.: ZERO-TOUCH BOOTSTRAP OF A NETWORK CONNECTED DEVICE

Published by Technical Disclosure Commons, 2019

 8 5786

the received EAP server public key to confirm that it is doing the 802.1X handshake with

the correct network.

Steps 8 through 14 of the call flow illustrate how the STA uses this to prevent a

rogue network from hijacking the connection. When the rogue network presents its server

Certificate in Step 13 of the call flow, the STA compares it with the key received inside

the POK DH envelop, and drops the connection if the keys do not match.

Steps 15 through 22 of the call flow illustrate a successful EAP authentication flow.

When the network presents its server Certificate in Step 19, the STA compares it with the

key received inside the POK DH envelop, and it confirms a match and completes the

802.1X TLS handshake in steps 21 and 22 of the call flow.

At this stage, there are multiple potential integration options possible for

proceeding with a BRSKI flow whereby the device uses its IDevID to establish trust with

the local network, enroll and obtain an LDevID in accordance with techniques presented

herein. These options include:

 Option 1: an EAP-BRSKI method could be defined and a tunneled EAP mechanism

could be used to tunnel the inner EAP-BRSKI method inside the outer EAP TLS

tunnel. The BRSKI flow would complete inside the context of the EAP

authentication prior to the STA receiving its IP address.

 Option 2: EAP BRSKI Type- Length-Values (TLVs) could be defined and these

TLVs transported inside an outer EAP-TEAP TLS tunnel. The BRSKI flow would

complete inside the context of the EAP authentication prior to the STA receiving

its IP address.

 Option 3: The EAP authentication completes and the BRSKI flow happens at the

application layer after a Layer 3 connection is established and after the STA has

received its IP address.

In each of the above options, once the BRSKI flow is complete and the STA has

received the local domain trust anchors, the STA substantially immediately tears down the

connection if it fails to verify the EAP server's identity using those anchors.

Once BRSKI is complete, the device can enroll to obtain its LDevID, and can use

its LDevID for all subsequent network accesses and 802.1X authentication.

9

Defensive Publications Series, Art. 1915 [2019]

https://www.tdcommons.org/dpubs_series/1915

 9 5786

In one example, presented is a method to integrate a mutual recognition and

network parameter provisioning between an IoT object and an enterprise management

network over Wi-Fi. POK may be exchanged over Wi-Fi. An AP may provide POK over

stateless exchanges. The IoT device may automatically choose the correct Wi-Fi network

to join. This process may be automated (e.g., no manual intervention on individual IoT

devices is needed as they are installed and powered on).

As described herein, IoT devices may be installed individually by Operational

Technology (OT) teams without the need for Information Technology (IT) team

shadowing. Moreover, these devices may be turned on massively ('building scale'). That is,

there is no device by device action. The IoT devices may automatically pick the right SSID

(e.g., in multi-tenant buildings with multiple IoT-friendly SSIDs). Further, IoT devices

may be provided assurance that the picked network is legitimate (e.g., 'my' network, not

'neighbor' network or 'rogue' network), regardless of the underlying 802.11 authentication

method (e.g., works in Open, Pre-Shared Key (PSK), or 802.1X/EAP Wi-Fi networks).

The recognition choreography described herein allows for integration into a standard

802.11 network while producing the aforementioned results.

Provided is a method by which the probe request can result in a comeback

exchange. By using the comeback mechanism, the AP may collect the information it needs

to answer a particular question, without mandating the AP to convert the probe exchange

to a stateful exchange. This structure may be used to allow for many other applications.

Information Element (IE) bit values may be used which represent "special

meaning." Because the exchanges are integrated into the standard 802.11 choreography,

the method described may be integrated into any 802.11 driver or network. Therefore,

knowledge of the devices (e.g., with BRSKI, IDevID, etc.) may be first installed into the

infrastructure at any point prior to the IoT device being added to the network. Once the IoT

device is added to the network, no manual IT intervention is needed. This allows the IoT

device operator to be an OT person, without IT shadowing.

The same method may be applied to radio technologies other than 802.11 (e.g.,

Bulk Transmission (BT) and other 802.15.4 techniques), because the existing discovery

chorography and messages may be reused.

10

Friel et al.: ZERO-TOUCH BOOTSTRAP OF A NETWORK CONNECTED DEVICE

Published by Technical Disclosure Commons, 2019

 10 5786

This method may be independent of the underlying network authentication method.

For example, in the case of 802.11, this method may be implemented if the production

network is Open, PSK or based on 802.1X/EAP authentication.

There are several possible touchpoints for an IoT onboarding process. The first

possible touchpoint is network infrastructure (e.g., AP, WLC, etc.). This is simply about

network configuration (i.e., a "configure once" type of action). The second possible

touchpoint is an authentication database, and the third possible touchpoint is a further

management platform (e.g., mesh application and service architecture). The second and

third possible touchpoints may be mass-configured (upload of batches). Therefore,

although there is a need for configuration for these items, they represent a low level of

effort.

The fourth possible touchpoint is individual IoT devices, one at a time. This

functions at a different scale from the other possible touchpoints, and this is the problem

addressed herein. When each individual device needs to be configured, the required effort

is linear with the number of device. This task is insignificant at small scales (e.g., a house),

and can sometimes be integrated in the deployment phase. However, at large scales the

manual configuration and onboarding this possible touchpoint does not work anymore. For

example, when an entire building is retrofitted, and then power is turned on, this can cause

thousands of IoT devices to come online at the same time. Alternatively, if the OT and IT

teams coordinate, this can result in unpredictable (from the IT standpoint) onboarding

needs and cycles.

As such, techniques described herein allow IoT devices to automatically onboard

and join a network without the requirement for operators to configure or manually interact

with each individual IoT object.

802.11 is not modified in a fundamental way (i.e., no modification of a protocol).

802.11 allows some frames to carry specific Information Elements, which value can be set

to known meanings, or can be set to a value that has a 'special meaning'. The special

meanings may be defined to support the IoT onboarding use case. As such, 802.11 is not

being modified, but rather a meaning is being specified for certain frames allowed by

802.11. The possibilities offered by the probe exchange, are thereby extended by allowing

additional information to be exchanged while still keeping the fundamental stateless nature

11

Defensive Publications Series, Art. 1915 [2019]

https://www.tdcommons.org/dpubs_series/1915

 11 5786

of the exchange. The method described herein may be integrated into any existing 802.11

stack with only minor modifications.

In summary, techniques are presented herein that allow devices to automatically

discover the correct enterprise wireless network to connect to, and securely onboard against

that network, without manual provisioning of network information or credentials on the

devices. This enables secure deployment of devices at scale on enterprise wireless

networks. Minor enhancements to IEEE 802.11 are described to enable this flow. Unlike

Wi-Fi Alliance DPP, the techniques presented herein are lightweight and do not include

additional messaging overhead between the STA and AP.

12

Friel et al.: ZERO-TOUCH BOOTSTRAP OF A NETWORK CONNECTED DEVICE

Published by Technical Disclosure Commons, 2019

	Technical Disclosure Commons
	January 28, 2019

	ZERO-TOUCH BOOTSTRAP OF A NETWORK CONNECTED DEVICE
	Owen Friel
	Eliot Lear
	Jerome Henry
	Stephen Orr
	Recommended Citation

	Microsoft Word - 917091_1

