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Abstract 

The solar cell junction is susceptible to performance degradation, due to internal temperature rise which is 

further perturbed by ambient temperature rise. The conversion efficiency of the solar module remarkably drops 

because of temperature rise. The diurnal module temperature hovers above 60 degrees C. It is possible to keep 

the conversion efficiency high by water-cooled or air blast equipment. This project is a preliminary study of the 

impact of temperature variation across seasons on the dynamic performance of photovoltaic power system. The 

photovoltaic (PV) module was mounted on a test rig at latitude 7 degree on top of physics building Obafemi 

Awolowo University campus. The output voltage of the PV module was applied to a resistive load and system 

efficiency performance measured over a period of time covering the dry and rainy seasons. Measurements of 

ambient temperature, PV junction operating temperature, wind speed, solar irradiance, and power delivered were 

carried out. A numerical algorithm was developed to analyse the data. The transport medium can store heat 

energy from the solar module, so that a large amount of hot water can be produced. The results show that this 

thermal transfer benefit, positions the PV system in good stead, for Microgrid: Cogeneration Energy Efficiency 

functionality.  

Keywords: Conversion efficiency, Photovoltaic power system, PV module, Water-cooled equipment, 

Cogeneration.  

 

1. Introduction 

Solar power could be the leading source of electricity if efficient harvesting of adequate amount of the energy 

delivered to the earth from the sun on a daily basis is possible. On the equator at noon 1000W/m
2
 of sun energy 

touches the ground. Unfortunately only about 20 percent of this power can be transferred into usable energy 

(Anderson et al 2003). This inefficiency is directly related to the percentage of photons that are absorbed when 

sunlight impinges on the PV surface. All electromagnetic radiation, including sunlight, is composed of particles 

called photons, which carry specific amounts of energy determined by the spectral 

properties of their source. Photons propagate with wavelength �, being related to the photon energy by  

λλ

hc
E =

                    

(1) 

where h is plank’s constant and c is the speed of light. Only photons with sufficient energy to create an 

electron-hole pair will contribute to the energy conversion process. Photons with energy greater than 1.1eV can 

generate electron-hole pairs (Burgers, 2005). Thus, the spectral nature of sunlight is an important consideration 

in the performance of solar cells (Gray, 2003). 

The physics of the PV cell is very similar to the classical p-n junction diode.When light is absorbed by 

the junction, the energy of the absorbed photons is transferred to the electron system of the material, resulting in 

the creation of charge carriers that are separated at the junction. The charge carriers may be electron-ion pairs in 

a liquid electrolyte, or electron-hole pairs in a solid semiconducting material. The charge carriers in the junction 

region create a potential gradient, get accelerated under the electric field and circulate as the current through an 

external circuit. The square of the current times the resistance of the circuit is the power converted into 

electricity. The remaining power of the photon elevates the temperature of the cell (Kluftinger, 2000). It is 

known that the conversion efficiency of the solar module remarkably drops because of temperature rise. The 

diurnal module temperature hovers above 60 degrees C (Fujii, et al, 2013). It is possible to keep the conversion 

efficiency high by water-cooled or air blast equipment. The benefits of cooling on heightened temperature is 

primarily efficiency gain and it is immediate and soothing to the mass material (composite) from which the PV is 

fabricated. This culminates in reduced thermal stress and consequently long life of system device. The 

accompanying energy gain retrievable from the underpinning storage device/transport medium, supplies useful 

heat energy needs. This project is a preliminary study of the impact of temperature variation, across seasons, on 

the dynamic performance of photovoltaic power system.  

 

2. Methodology 

The photovoltaic (PV) module was mounted on a test rig at latitude 7 degree south facing on top of physics 

building Obafemi Awolowo University campus. The following data were acquired using the Campbell Scientific 
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application package-Loggernet: ambient temperature, irradiance, voltage across resistive load and PV junction 

temperature. This was done daily in 2-minute interval for one year. Shaded pyranometer, optical thermometer, 

and anemometer, were used for measurement of irradiance, temperature and wind speed respectively. The power 

generated by the PV array was computed using irradiance (GG), nominal operating cell temperature (NOCT), 

open circuit voltage (VOC), short circuit current (ISC). The last three were obtained from the manufacturer’s 

specification for the PV. The measured data for photovoltaic cell junction, ambient temperature, irradiance and 

load voltage are provided as daily average. The output voltage of the PV module was applied to a resistive load 

and system efficiency performance determined over a period of time covering the dry and rainy seasons. A 

numerical algorithm was developed to analyse the data. 

The actual output of a PV module or system in the field is a function of orientation, total irradiance, air 

temperature, soiling and various system-related losses (Angelopoulos, 2004). The PV conversion efficiency (η
C

) 

is calculated from the measured maximum or peak PV power
maxP , device area (A), and total incident irradiance

( )
i

G : 

AG

P

i

C

max=η 100%                                                (2) 

The PV conversion efficiency ηc is inversely proportional to the area definition used in equation (2). For 

the PV modules, an aperture-area definition was used. The aperture-area definition is the total area minus the 

frame area. Even though the power or peak watt rating on the module’s name plate is often given with reference 

to Standard Test Condition (STC), the prevailing conditions under natural light do not commonly match name 

plate conditions. The manufacturer assigned name plate ratings to a given module model number is usually 

higher than the measured power output in the field. Module typically runs at 40° to 60°C, if the name plate rating 

is determined at 25°C, then the actual power produced is less. The temperature coefficient for the peak power is 

usually negative. The nominal operating cell temperature (NOCT) is a rating designed to give information about 

the thermal qualities of a module and a more realistic estimate of the power in the field on a clear sky sunny day, 

at solar noon. The NOCT of a module is a fixed temperature the module would operate at when exposed to the 

nominal thermal environment (20°C air temperature, 800W/m
2
 total irradiance, and a wind speed of 1 m/s). The 

NOCT for the sample module data provides information for the prediction of PV array performance for the site. 

The installed NOCT is up to 15°C warmer for roof-mounted applications than a free-standing module depending 

on the stand-off distance between the module and the roof. The temperature can be calculated from the NOCT 

provided by the manufacturer or measured values of NOCT and air temperature using (Emery, 2003), 

( )
800

20 i

ambC

G
CNOCTTT °−+=                                 (3) 

where
amb

T , is ambient temperature, °C; 
C

T  is cell temperature, °C. 

In a dynamic meteorological system for PV module performance measurement, capable of providing 

instantaneous efficiency figures, the diurnal variation in irradiance and ambient (air) temperature aggregate over 

a period of days and/or months to delineate seasons. PV module efficiency is particularly affected by sunlight 

intensity (irradiance) and temperature, which vary due to the daily sunrise-sunset cycle, and seasonal sun 

trajectories at varying latitudes (Moghbelli, 2006). 

 

2.1 Experimental set up 

The schematic in figure 1 was set up with 66Ω 18W resistor as load. Observations were made in 2-minute 

intervals for the seasons of the year. The data acquisition system captured the ambient temperature, solar 

radiation, PV junction temperature, load current and wind speed. The system efficiency performances during 

“hot and dry”, “wet”, and “hot”, seasons were observed. The electrical energy delivered by the photovoltaic 

system to the load was computed by summing the 2-minute stored values. The system efficiency of the solar 

photovoltaic supply was computed using: 

∫

∫
=

2

1

2

1

τ

τ

τ

τ

τ

τ

η

dGA

Pd

i

s
                                                 (4)             

where,   

A is PVM representative area, m
2
;  
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i
G  is the global incident irradiance, W/m

2
; 

 P is the electrical power delivered to the load, W; 

��	���	�� are the beginning and end of observation duration. 

 

3. Results and Analysis 

The test results and analysis were carried out using MATLAB as a tool, the performance curves were 

constructed, with the measurements taken as data inputs. The performance of the PV module in terms of 

efficiency over seasons is presented in graphs, for the different seasons with irradiance/temperature curve 

overlay. 

 

3.1 Temperature effects in dynamic PV system 

The solar cell junction is susceptible to performance degradation, due to internal temperature rise which is 

further perturbed by ambient temperature rise. The junction temperature (monitored by sensing the back 

temperature of the PV module) of the prototype was monitored by optical temperature sensor; the operating 

temperature variation over seasons is shown in figure 2. The efficiency ascent in the November/December region 

is curious, however, the PV junction temperature curve overlaid on the efficiency plot reveals the impact of the 

former on the latter. It reveals the effect of uninhibited penetration of irradiance coupled with the characteristic 

cool breeze of the less humid “hot/dry” region. The growing double arrows within the ellipse, highlights the 

ascent of efficiency with the advent of PV junction temperature diminution.  

The weather of the days covered by the ellipse characteristically differentiates between the “hot/dry” 

and the “hot” region. This phenomenon translates directly to initial cost reduction in PV systems because more 

power is harvested when efficiency is higher and reduced number of PVs will be required to support the same 

load. Figure 3 shows that ambient temperature in the “hot” region is more severe than in the “hot/dry” region. 

The blow up plot of the ellipse portion in figure 4 further elucidates this fact. 

 

3.2 Seasonal variations 

Solar energy is both variable and intermittent in its distribution; solar power output is variable in that it produces 

different amounts of power at different times of the day, and on different days. However, this patterned 

variability forms the basis for its relative predictability (Goetzberger, and Hoffmann, 2005), see figure 5. The 

solution to solar  power supply challenges is further elucidated by the understanding of its intermittence, as every 

night, solar photovoltaic systems do not produce power, unless by the release of power storage provision that 

may accompany the system. Even though earth-sun relational movement is the causative agent of seasonal 

variations, solar intensity (irradiance) is the parameter whose level or absence translates directly to these 

seasonal variations in PV systems’ performance. This is shown in the efficiency versus time of day plot of figure 

6. The other parameter like a Siamese twin to irradiance is temperature. The heating effect of the late morning 

flux of solar energy usually manifests about two hours later (Geiger, 1950). The efficiency performance of the 

PV module is remarkably enhanced around the clement temperature hours of the day, with turning points 

observable at 10.00am and 3.00pm. 

3.2.1 Irradiance effect on efficiency 

The best efficiency window spanning 9.30am and 4.00pm includes the period of the day when irradiance is at its 

zenith. Figure 7 shows the overlay of daily hourly irradiance curve on efficiency performance of the PV with 

variable load, using average hourly irradiance and efficiency. Even though the efficiency appears to capsize in 

this portion, it is by far the most stable efficiency period. This effect is the repercussion of increased solar flux 

that peaks at 12 noon daily. Back cooling of the device will greatly enhance the efficiency performance in this 

region of very high insolation. 

3.2.2 Annual seasonal variability of PV system efficiency 

It is possible to observe three different solar energy segment for “hot/dry”, “hot”, and “wet” seasons 

corresponding to November/December, February/March, and July/August, in that order. Figure 8 shows the 

trend in the efficiency performance of the PV, with the overlay of irradiance curve, it is easy to see that even 

though there is dearth in the supply of irradiance in the period covering July/August, the system efficiency in that 

period clearly towers above that of February/March, which actually has adequate irradiance but inclement 

average daily temperatures. It is interesting to note the relative stability on both sides of July/August in 

efficiency. The region following July/August is characterized by adequate irradiance without cloud overcast and 

temperature is less regular at its upper threshold. Making sure that installation is cognisant of professional best 

practices (Risser, 1995), a heat exchanger incorporation to the PV that is PV/T will ensure efficiency imitates the 

accent of the daily irradiance profile. 
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4. Conclusion 

The diminution in efficiency performance of PV module is further aggravated by heightened device junction 

temperature. The instantaneous, overwhelmingly high efficiency in wet season is as a result of the sporadic 

showers and coolness associated with the season. Observably, the rising efficiency profile from 10am can be 

steadied by cooling, maintaining an all-time higher value than without cooling, as long as there is irradiance. As 

a result of the temperature gap of 20-60 degree C, the prospect of hot water harvesting using the PV in 

cogeneration mode is realizable. The transport medium can store heat energy from the solar module, so that a 

large amount of hot water can be produced, however a heat pump may be a desirable addendum for cool wet 

season, if heat energy is required, as the case may be. The results show that this thermal transfer benefit positions 

the PV System in good stead, for Microgrid: Cogeneration Energy Efficiency functionality. 

One possible research direction is a programmed pumping device acting on two temperature thresholds 

of 25 and 30 degrees C for cut-off and cut-in respectively for a PV/T. Also, heat pump should be incorporated to 

cater for heat energy needs in wet season.  
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Figure 1: PVM variable load schematic 

 

 
Figure 2: Effect of PV junction temperature on efficiency (The growing double arrow within the ellipse 

highlights the ascent of efficiency with the advent of PV junction temperature diminution). 
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Figure 3: Ambient and PV junction temperature curves overlay. (The ascent and descent arrows highlight the 

prevalent trend in the region). 

 

 
Figure 4: Blow up plot of ellipse portion of figure 2 
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Figure 5: Irradiance intermittence and variability curve 

 

 
Figure 6: Efficiency versus time of day plot 
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Figure 7: Overlay of daily average irradiance curve on efficiency performance of the PV on DC load, using 

average hourly irradiance and efficiency. 

 
Figure 8: Annual trend in seasonal PV System efficiency/irradiance 
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