
Technical Disclosure Commons

Defensive Publications Series

January 11, 2019

Item recommendations for cache and
synchronization of application stores
Wei Chai

Zhiwei Gu

Sundeep Sancheti

Yilan Liu

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Chai, Wei; Gu, Zhiwei; Sancheti, Sundeep; and Liu, Yilan, "Item recommendations for cache and synchronization of application
stores", Technical Disclosure Commons, (January 11, 2019)
https://www.tdcommons.org/dpubs_series/1874

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/234668296?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F1874&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1874&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1874&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/1874?utm_source=www.tdcommons.org%2Fdpubs_series%2F1874&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Item recommendations for cache and synchronization of application stores

Introduction

To reduce the latency of rendering the page of an app in an application store (e.g., that

provides access to downloads of apps to a mobile device), the application store app periodically

synchronizes with its backend and caches on the user mobile device app pages that a user is

likely to visit.

This disclosure uses deep learning models to predict the next N apps that a user is likely

to visit based on permitted user activity signals, e.g., demographic information, historical visits

to deep links associated with the app, etc.

Keywords

Machine learning; caching; app download; mobile apps; app page; deep links

Summary

Generally, the present disclosure is directed to recommending items for cache and

synchronization of application stores, e.g., that provide downloads of software applications to a

computing device. In particular, in some implementations, the systems and methods of the

present disclosure can include or otherwise leverage one or more machine-learned models to

predict the top N apps that a given user is likely to visit over the next X days based on user-

permitted factors such as country, language, age, installed apps, deep links pertaining to the app

that the user visited previously, etc.

In this context, a deep link is a URL outside the application store, e.g., a link that results

from a search query, an ad, etc., that leads to the app within the application store. A user visit to

a deep link is taken as a sign of potential interest in the app. Per the techniques of this disclosure,

2

Chai et al.: Item recommendations for cache and synchronization of application

Published by Technical Disclosure Commons, 2019

the number of apps (N) and the selection of apps is personalized to the user.

Detailed Description

As described above, the present disclosure is directed to recommending items for cache

and synchronization of application stores, e.g., that provide downloads of software applications

to a computing device. In particular, in some implementations, the systems and methods of the

present disclosure can include or otherwise leverage one or more machine-learned models to

predict the top N apps that a given user is likely to visit over the next X days based on user-

permitted factors such as country, language, age, installed apps, deep links pertaining to the app

that the user visited previously, etc.

Figure 1 depicts a block diagram of an example machine-learned model according to

example implementations of the present disclosure. As illustrated in Figure 1, in some

implementations, the machine-learned model is trained to receive input data of one or more types

and, in response, provide output data of one or more types. Thus, Figure 1 illustrates the

machine-learned model performing inference.

In some implementations, the input data can include one or more features that are

associated with an instance or an example. In some implementations, the one or more features

associated with the instance or example can be organized into a feature vector. In some

implementations, the output data can include one or more predictions. Predictions can also be

referred to as inferences. Thus, given features associated with a particular instance, the machine-

learned model can output a prediction for such instance based on the features.

The machine-learned model can be or include one or more of various different types of

machine-learned models. In particular, in some implementations, the machine-learned model can

3

Defensive Publications Series, Art. 1874 [2019]

https://www.tdcommons.org/dpubs_series/1874

perform classification, regression, clustering, anomaly detection, recommendation generation,

and/or other tasks.

In some implementations, the machine-learned model can perform various types of

classification based on the input data. For example, the machine-learned model can perform

binary classification or multiclass classification. In binary classification, the output data can

include a classification of the input data into one of two different classes. In multiclass

classification, the output data can include a classification of the input data into one (or more) of

more than two classes. The classifications can be single label or multi-label.

In some implementations, the machine-learned model can perform discrete categorical

classification in which the input data is simply classified into one or more classes or categories.

In some implementations, the machine-learned model can perform classification in which

the machine-learned model provides, for each of one or more classes, a numerical value

descriptive of a degree to which it is believed that the input data should be classified into the

corresponding class. In some instances, the numerical values provided by the machine-learned

model can be referred to as “confidence scores” that are indicative of a respective confidence

associated with classification of the input into the respective class. In some implementations, the

confidence scores can be compared to one or more thresholds to render a discrete categorical

prediction. In some implementations, only a certain number of classes (e.g., one) with the

relatively largest confidence scores can be selected to render a discrete categorical prediction.

In some implementations, the machine-learned model can provide a probabilistic

classification. For example, the machine-learned model can be able to predict, given a sample

input, a probability distribution over a set of classes. Thus, rather than outputting only the most

likely class to which the sample input should belong, the machine-learned model can output, for

4

Chai et al.: Item recommendations for cache and synchronization of application

Published by Technical Disclosure Commons, 2019

each class, a probability that the sample input belongs to such class. In some implementations,

the probability distribution over all possible classes can sum to one. In some implementations, a

softmax function or layer can be used to squash a set of real values respectively associated with

the possible classes to a set of real values in the range (0, 1) that sum to one.

In some implementations, the probabilities provided by the probability distribution can be

compared to one or more thresholds to render a discrete categorical prediction. In some

implementations, only a certain number of classes (e.g., one) with the relatively largest predicted

probability can be selected to render a discrete categorical prediction.

In some implementations in which the machine-learned model performs classification, the

machine-learned model can be trained using supervised learning techniques. For example, the

machine-learned model can be trained on a training dataset that includes training examples

labeled as belonging (or not belonging) to one or more classes. Further details regarding

supervised training techniques are provided below.

In some implementations, the machine-learned model can perform regression to provide

output data in the form of a continuous numeric value. The continuous numeric value can

correspond to any number of different metrics or numeric representations, including, for

example, currency values, scores, or other numeric representations. As examples, the machine-

learned model can perform linear regression, polynomial regression, or nonlinear regression. As

examples, the machine-learned model can perform simple regression or multiple regression. As

described above, in some implementations, a softmax function or layer can be used to squash a

set of real values respectively associated with a two or more possible classes to a set of real

values in the range (0, 1) that sum to one.

In some implementations, the machine-learned model can perform various types of

5

Defensive Publications Series, Art. 1874 [2019]

https://www.tdcommons.org/dpubs_series/1874

clustering. For example, the machine-learned model can identify one or more previously-defined

clusters to which the input data most likely corresponds. As another example, the machine-

learned model can identify one or more clusters within the input data. That is, in instances in

which the input data includes multiple objects, documents, or other entities, the machine-learned

model can sort the multiple entities included in the input data into a number of clusters. In some

implementations in which the machine-learned model performs clustering, the machine-learned

model can be trained using unsupervised learning techniques.

In some implementations, the machine-learned model can perform anomaly detection or

outlier detection. For example, the machine-learned model can identify input data that does not

conform to an expected pattern or other characteristic (e.g., as previously observed from previous

input data). As examples, the anomaly detection can be used for fraud detection or system failure

detection.

In some implementations, the machine-learned model can provide output data in the form

of one or more recommendations. For example, the machine-learned model can be included in a

recommendation system or engine. As an example, given input data that describes previous

outcomes for certain entities (e.g., a score, ranking, or rating indicative of an amount of success

or enjoyment), the machine-learned model can output a suggestion or recommendation of one or

more additional entities that, based on the previous outcomes, are expected to have a desired

outcome (e.g., elicit a score, ranking, or rating indicative of success or enjoyment). As one

example, given input data descriptive of a number of products purchased or rated highly by a

user, a recommendation system can output a suggestion or recommendation of an additional

product that the user might enjoy or wish to purchase.

In some implementations, the machine-learned model can act as an agent within an

6

Chai et al.: Item recommendations for cache and synchronization of application

Published by Technical Disclosure Commons, 2019

environment. For example, the machine-learned model can be trained using reinforcement

learning, which will be discussed in further detail below.

In some implementations, the machine-learned model can be a parametric model while, in

other implementations, the machine-learned model can be a non-parametric model. In some

implementations, the machine-learned model can be a linear model while, in other

implementations, the machine-learned model can be a non-linear model.

As described above, the machine-learned model can be or include one or more of various

different types of machine-learned models. Examples of such different types of machine-learned

models are provided below for illustration. One or more of the example models described below

can be used (e.g., combined) to provide the output data in response to the input data. Additional

models beyond the example models provided below can be used as well.

In some implementations, the machine-learned model can be or include one or more

classifier models such as, for example, linear classification models; quadratic classification

models; etc.

In some implementations, the machine-learned model can be or include one or more

regression models such as, for example, simple linear regression models; multiple linear

regression models; logistic regression models; stepwise regression models; multivariate adaptive

regression splines; locally estimated scatterplot smoothing models; etc.

In some implementations, the machine-learned model can be or include one or more

decision tree-based models such as, for example, classification and/or regression trees; iterative

dichotomiser 3 decision trees; C4.5 decision trees; chi-squared automatic interaction detection

decision trees; decision stumps; conditional decision trees; etc.

7

Defensive Publications Series, Art. 1874 [2019]

https://www.tdcommons.org/dpubs_series/1874

In some implementations, the machine-learned model can be or include one or more

kernel machines. In some implementations, the machine-learned model can be or include one or

more support vector machines.

In some implementations, the machine-learned model can be or include one or more

instance-based learning models such as, for example, learning vector quantization models; self-

organizing map models; locally weighted learning models; etc.

In some implementations, the machine-learned model can be or include one or more

nearest neighbor models such as, for example, k-nearest neighbor classifications models; k-

nearest neighbors regression models; etc.

In some implementations, the machine-learned model can be or include one or more

Bayesian models such as, for example, naïve Bayes models; Gaussian naïve Bayes models;

multinomial naïve Bayes models; averaged one-dependence estimators; Bayesian networks;

Bayesian belief networks; hidden Markov models; etc.

In some implementations, the machine-learned model can be or include one or more

artificial neural networks (also referred to simply as neural networks). A neural network can

include a group of connected nodes, which also can be referred to as neurons or perceptrons. A

neural network can be organized into one or more layers. Neural networks that include multiple

layers can be referred to as “deep” networks. A deep network can include an input layer, an

output layer, and one or more hidden layers positioned between the input layer and the output

layer. The nodes of the neural network can be connected or non-fully connected.

In some implementations, the machine-learned model can be or include one or more feed

forward neural networks. In feed forward networks, the connections between nodes do not form

a cycle. For example, each connection can connect a node from an earlier layer to a node from a

8

Chai et al.: Item recommendations for cache and synchronization of application

Published by Technical Disclosure Commons, 2019

later layer.

In some instances, the machine-learned model can be or include one or more recurrent

neural networks. . In some instances, at least some of the nodes of a recurrent neural network can

form a cycle. Recurrent neural networks can be especially useful for processing input data that is

sequential in nature. In particular, in some instances, a recurrent neural network can pass or

retain information from a previous portion of the input data sequence to a subsequent portion of

the input data sequence through the use of recurrent or directed cyclical node connections.

As one example, sequential input data can include time-series data (e.g., sensor data

versus time or imagery captured at different times). For example, a recurrent neural network can

analyze sensor data versus time to detect or predict a swipe direction, to perform handwriting

recognition, etc. As another example, sequential input data can include words in a sentence (e.g.,

for natural language processing, speech detection or processing, etc.); notes in a musical

composition; sequential actions taken by a user (e.g., to detect or predict sequential application

usage); sequential object states; etc.

Example recurrent neural networks include long short-term (LSTM) recurrent neural

networks; gated recurrent units; bi-directional recurrent neural networks; continuous time

recurrent neural networks; neural history compressors; echo state networks; Elman networks;

Jordan networks; recursive neural networks; Hopfield networks; fully recurrent networks;

sequence-to-sequence configurations; etc.

In some implementations, the machine-learned model can be or include one or more

convolutional neural networks. In some instances, a convolutional neural network can include

one or more convolutional layers that perform convolutions over input data using learned filters.

Filters can also be referred to as kernels. Convolutional neural networks can be especially useful

9

Defensive Publications Series, Art. 1874 [2019]

https://www.tdcommons.org/dpubs_series/1874

for vision problems such as when the input data includes imagery such as still images or video.

However, convolutional neural networks can also be applied for natural language processing.

In some implementations, the machine-learned model can be or include one or more

generative networks such as, for example, generative adversarial networks. Generative networks

can be used to generate new data such as new images or other content.

In some implementations, the machine-learned model can be or include an autoencoder.

In some instances, the aim of an autoencoder is to learn a representation (e.g., a lower-

dimensional encoding) for a set of data, typically for the purpose of dimensionality reduction.

For example, in some instances, an autoencoder can seek to encode the input data and then

provide output data that reconstructs the input data from the encoding. Recently, the autoencoder

concept has become more widely used for learning generative models of data. In some instances,

the autoencoder can include additional losses beyond reconstructing the input data.

In some implementations, the machine-learned model can be or include one or more other

forms of artificial neural networks such as, for example, deep Boltzmann machines; deep belief

networks; stacked autoencoders; etc. Any of the neural networks described herein can be

combined (e.g., stacked) to form more complex networks.

In some implementations, one or more neural networks can be used to provide an

embedding based on the input data. For example, the embedding can be a representation of

knowledge abstracted from the input data into one or more learned dimensions. In some

instances, embeddings can be a useful source for identifying related entities. In some instances

embeddings can be extracted from the output of the network, while in other instances

embeddings can be extracted from any hidden node or layer of the network (e.g., a close to final

but not final layer of the network). Embeddings can be useful for performing auto suggest next

10

Chai et al.: Item recommendations for cache and synchronization of application

Published by Technical Disclosure Commons, 2019

video, product suggestion, entity or object recognition, etc. In some instances, embeddings be

useful inputs for downstream models. For example, embeddings can be useful to generalize input

data (e.g., search queries) for a downstream model or processing system.

In some implementations, the machine-learned model can include one or more clustering

models such as, for example, k-means clustering models; k-medians clustering models;

expectation maximization models; hierarchical clustering models; etc.

In some implementations, the machine-learned model can perform one or more

dimensionality reduction techniques such as, for example, principal component analysis; kernel

principal component analysis; graph-based kernel principal component analysis; principal

component regression; partial least squares regression; Sammon mapping; multidimensional

scaling; projection pursuit; linear discriminant analysis; mixture discriminant analysis; quadratic

discriminant analysis; generalized discriminant analysis; flexible discriminant analysis;

autoencoding; etc.

In some implementations, the machine-learned model can perform or be subjected to one

or more reinforcement learning techniques such as Markov decision processes; dynamic

programming; Q functions or Q-learning; value function approaches; deep Q-networks;

differentiable neural computers; asynchronous advantage actor-critics; deterministic policy

gradient; etc.

In some implementations, the machine-learned model can be an autoregressive model. In

some instances, an autoregressive model can specify that the output data depends linearly on its

own previous values and on a stochastic term. In some instances, an autoregressive model can

take the form of a stochastic difference equation. One example autoregressive model is

WaveNet, which is a generative model for raw audio.

11

Defensive Publications Series, Art. 1874 [2019]

https://www.tdcommons.org/dpubs_series/1874

In some implementations, the machine-learned model can include or form part of a

multiple model ensemble. As one example, bootstrap aggregating can be performed, which can

also be referred to as “bagging.” In bootstrap aggregating, a training dataset is split into a number

of subsets (e.g., through random sampling with replacement) and a plurality of models are

respectively trained on the number of subsets. At inference time, respective outputs of the

plurality of models can be combined (e.g., through averaging, voting, or other techniques) and

used as the output of the ensemble.

One example model ensemble is a random forest, which can also be referred to as a

random decision forest. Random forests are an ensemble learning method for classification,

regression, and other tasks. Random forests are generated by producing a plurality of decision

trees at training time. In some instances, at inference time, the class that is the mode of the

classes (classification) or the mean prediction (regression) of the individual trees can be used as

the output of the forest. Random decision forests can correct for decision trees' tendency to

overfit their training set.

Another example ensemble technique is stacking, which can, in some instances, be

referred to as stacked generalization. Stacking includes training a combiner model to blend or

otherwise combine the predictions of several other machine-learned models. Thus, a plurality of

machine-learned models (e.g., of same or different type) can be trained based on training data. In

addition, a combiner model can be trained to take the predictions from the other machine-learned

models as inputs and, in response, produce a final inference or prediction. In some instances, a

single-layer logistic regression model can be used as the combiner model.

Another example ensemble technique is boosting. Boosting can include incrementally

building an ensemble by iteratively training weak models and then adding to a final strong

12

Chai et al.: Item recommendations for cache and synchronization of application

Published by Technical Disclosure Commons, 2019

model. For example, in some instances, each new model can be trained to emphasize the training

examples that previous models misinterpreted (e.g., misclassified). For example, a weight

associated with each of such misinterpreted examples can be increased. One common

implementation of boosting is AdaBoost, which can also be referred to as Adaptive Boosting.

Other example boosting techniques include LPBoost; TotalBoost; BrownBoost; xgboost;

MadaBoost, LogitBoost, gradient boosting; etc.

Furthermore, any of the models described above (e.g., regression models and artificial

neural networks) can be combined to form an ensemble. As an example, an ensemble can include

a top level machine-learned model or a heuristic function to combine and/or weight the outputs

of the models that form the ensemble.

In some implementations, multiple machine-learned models (e.g., that form an ensemble

can be linked and trained jointly (e.g., through backpropagation of errors sequentially through

the model ensemble). However, in some implementations, only a subset (e.g., one) of the jointly

trained models is used for inference.

In some implementations, the machine-learned model can be used to preprocess the input

data for subsequent input into another model. For example, the machine-learned model can

perform dimensionality reduction techniques and embeddings (e.g., matrix factorization,

principal components analysis, singular value decomposition, word2vec/GLOVE, and/or related

approaches); clustering; and even classification and regression for downstream consumption.

Many of these techniques have been discussed above and will be further discussed below.

Referring again to Figure 1, and as discussed above, the machine-learned model can be

trained or otherwise configured to receive the input data and, in response, provide the output

data. The input data can include different types, forms, or variations of input data. As examples,

13

Defensive Publications Series, Art. 1874 [2019]

https://www.tdcommons.org/dpubs_series/1874

in various implementations, the input data can include, with user permission, a user’s country,

language, age, installed apps, deep links pertaining to the app that the user visited, etc. In this

context, a deep link is a URL outside the application store, e.g., a link that results from a search

query, an ad, etc., that leads to the app within the application store. A user visit to a deep link is

taken as a sign of potential interest in the app.

In some implementations, the machine-learned model can receive and use the input data

in its raw form. In some implementations, the raw input data can be preprocessed. Thus, in

addition or alternatively to the raw input data, the machine-learned model can receive and use the

preprocessed input data.

In some implementations, preprocessing the input data can include extracting one or more

additional features from the raw input data. For example, feature extraction techniques can be

applied to the input data to generate one or more new, additional features. Example feature

extraction techniques include edge detection; corner detection; blob detection; ridge detection;

scale-invariant feature transform; motion detection; optical flow; Hough transform; etc.

In some implementations, the extracted features can include or be derived from

transformations of the input data into other domains and/or dimensions. As an example, the

extracted features can include or be derived from transformations of the input data into the

frequency domain. For example, wavelet transformations and/or fast Fourier transforms can be

performed on the input data to generate additional features.

In some implementations, the extracted features can include statistics calculated from the

input data or certain portions or dimensions of the input data. Example statistics include the

mode, mean, maximum, minimum, or other metrics of the input data or portions thereof.

In some implementations, as described above, the input data can be sequential in nature.

14

Chai et al.: Item recommendations for cache and synchronization of application

Published by Technical Disclosure Commons, 2019

In some instances, the sequential input data can be generated by sampling or otherwise

segmenting a stream of input data. As one example, frames can be extracted from a video. In

some implementations, sequential data can be made non-sequential through summarization.

As another example preprocessing technique, portions of the input data can be imputed.

For example, additional synthetic input data can be generated through interpolation and/or

extrapolation.

As another example preprocessing technique, some or all of the input data can be scaled,

standardized, normalized, generalized, and/or regularized. Example regularization techniques

include ridge regression; least absolute shrinkage and selection operator (LASSO); elastic net;

least-angle regression; cross-validation; L1 regularization; L2 regularization; etc. As one

example, some or all of the input data can be normalized by subtracting the mean across a given

dimension’s feature values from each individual feature value and then dividing by the standard

deviation or other metric.

As another example preprocessing technique, some or all or the input data can be

quantized or discretized. As yet another example, qualitative features or variables included in the

input data can be converted to quantitative features or variables. For example, one hot encoding

can be performed.

In some implementations, dimensionality reduction techniques can be applied to the input

data prior to input into the machine-learned model. Several examples of dimensionality reduction

techniques are provided above, including, for example, principal component analysis; kernel

principal component analysis; graph-based kernel principal component analysis; principal

component regression; partial least squares regression; Sammon mapping; multidimensional

scaling; projection pursuit; linear discriminant analysis; mixture discriminant analysis; quadratic

15

Defensive Publications Series, Art. 1874 [2019]

https://www.tdcommons.org/dpubs_series/1874

discriminant analysis; generalized discriminant analysis; flexible discriminant analysis;

autoencoding; etc.

In some implementations, during training, the input data can be intentionally deformed in

any number of ways to increase model robustness, generalization, or other qualities. Example

techniques to deform the input data include adding noise; changing color, shade, or hue;

magnification; segmentation; amplification; etc.

Referring again to Figure 1, in response to receipt of the input data, the machine-learned

model can provide the output data. The output data can include different types, forms, or

variations of output data. As examples, in various implementations, the output data can include

predictions of the top N apps that a given user is likely to visit over the next X days, subject to

minimizing cost, where cost includes the number of backend remote procedure calls (RPC),

latency, etc.

The prediction problem can also be formulated as a constrained optimization problem,

e.g.,

𝑎𝑟𝑔𝑚𝑎𝑥{𝑎𝑖,𝑁}𝑠𝑢𝑚𝑖(𝑝(𝑣𝑖𝑠𝑖𝑡 𝑎𝑖|𝑢𝑠𝑒𝑟, 𝑑𝑒𝑣𝑖𝑐𝑒))

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑠𝑢𝑚(𝑐𝑜𝑠𝑡({𝑎𝑖}, 𝑢𝑠𝑒𝑟, 𝑑𝑒𝑣𝑖𝑐𝑒)) <= 𝑇,

where

ai is the ith of N apps;

𝑝(𝑣𝑖𝑠𝑖𝑡 𝑎𝑖|𝑢𝑠𝑒𝑟, 𝑑𝑒𝑣𝑖𝑐𝑒)is the probability that a user operating a device will visit the app

ai;

𝑐𝑜𝑠𝑡({𝑎𝑖}, 𝑢𝑠𝑒𝑟, 𝑑𝑒𝑣𝑖𝑐𝑒) is the cost of the visit; and

T is an upper threshold on cost.

16

Chai et al.: Item recommendations for cache and synchronization of application

Published by Technical Disclosure Commons, 2019

The prediction problem is decoupled into the following steps, e.g.,

1. predicting the probability of a given user to visit a particular app; and

2. selecting optimal number of apps to sync for a given user.

Predicting a user’s probability to visit a particular app - 𝑝(𝑣𝑖𝑠𝑖𝑡 𝑎𝑖|𝑢𝑠𝑒𝑟)

A machine learning classification model based, e.g., on candidate generation, is trained to

predict next visited deep link app using user-permitted factors such as country, language, age,

installed apps, search queries, app usage, visited deep links pertaining to the app, etc. In this

context, a deep link is a URL outside the application store, e.g., a link that results from a search

query, an ad, etc., that leads to the app within the application store.

A user visit to a deep link is taken as an indicator of potential interest in the app. Training

examples for the classification model include examples that represent the user state at a certain

time point and the (label of the) app that the user visited within a certain duration, e.g., seven

days, of time point. For example, positive training data comprises an instance where a user

visited a deep link of an app and followed it by a visit to the app within the next seven days. A

negative training example is an instance where a visit to a deep link is not followed by a visit to

the app within seven days.

To generate training examples, a data extraction tool extracts users’ deep link visits (when

permitted) over a certain duration, e.g., the past sixty-three days, and generates visit sequences.

Each deep link visit generates a training example, with the visited app being the label. Deep link

visits are deduplicated if the visits are closely spaced in time. To reduce the possibility of

information leak, the deep link app label is excluded from the historical deep link visited apps

17

Defensive Publications Series, Art. 1874 [2019]

https://www.tdcommons.org/dpubs_series/1874

feature.

 An example machine learning model that can be used to predict the probability of a user

visiting an app is illustrated in Figure 6. As illustrated in that figure, a three-layer deep neural

network learns on features such as the user’s country, language, installed apps, search queries,

deep link visits, etc. In the example of Figure 6, the label is the current deep link visit.

Selecting optimal number of apps (N) to sync for a given user

 As mentioned before, the number of apps (N) is advantageously personalized to the user,

such that more apps are cached if the user has good latency gains. If a user frequently visits deep

links then such as user is given a relatively large N, and vice-versa.

On the client side, cache and sync (C&S) gains for the user are obtained. The actual apps

to be cached are determined based on the prediction score and collected gains. Since

synchronization is batched, the number of apps to synchronize also accounts for batch size. The

procedure to determine N for each user can be initialized with a fixed N across all users.

The number of apps for a given user is maintained between a certain minimum, to ensure

a threshold of gains for the user, and a certain maximum, so as to not overwhelm the backend. A

technique to keep the number of apps between a minimum and maximum is to make the number

of apps a piecewise linear function of the C&S latency gain, e.g.,

Number of apps to sync = 𝑀𝐼𝑁𝐴𝑃𝑃𝑆 + 𝑀𝐴𝑋𝐴𝑃𝑃𝑆 ∗ (𝑐𝑠𝑔𝑎𝑖𝑛 − 𝑎) / (𝑏 − 𝑎),

where the parameters MINAPPS, MAXAPPS, a and b can be determined offline, e.g.,

through experimentation.

Figure 7 illustrates the number of apps to sync versus the C&S latency gain when

18

Chai et al.: Item recommendations for cache and synchronization of application

Published by Technical Disclosure Commons, 2019

MINAPPS=20, MAXAPPS=120, a=1 and b=2. In this example, the client device fetches at least

20 apps and at most 120 apps. If C&S latency gain is between 1 and 2, the number of apps

fetched varies linearly with C&S latency gain.

As discussed above, in some implementations, the output data can include various types

of classification data (e.g., binary classification, multiclass classification, single label, multi-

label, discrete classification, regressive classification, probabilistic classification, etc.) or can

include various types of regressive data (e.g., linear regression, polynomial regression, nonlinear

regression, simple regression, multiple regression, etc.). In other instances, the output data can

include clustering data, anomaly detection data, recommendation data, or any of the other forms

of output data discussed above.

In some implementations, the output data can influence downstream processes or decision

making. As one example, in some implementations, the output data can be interpreted and/or

acted upon by a rules-based regulator.

Thus, the present disclosure provides systems and methods that include or otherwise

leverage one or more machine-learned models to predict the top N apps that a given user is likely

to visit over the next X days based on user-permitted factors such as country, language, age,

installed apps, deep links pertaining to the app that the user visited, etc. Any of the different

types or forms of input data described above can be combined with any of the different types or

forms of machine-learned models described above to provide any of the different types or forms

of output data described above.

The systems and methods of the present disclosure can be implemented by or otherwise

executed on one or more computing devices. Example computing devices include user

computing devices (e.g., laptops, desktops, and mobile computing devices such as tablets,

19

Defensive Publications Series, Art. 1874 [2019]

https://www.tdcommons.org/dpubs_series/1874

smartphones, wearable computing devices, etc.); embedded computing devices (e.g., devices

embedded within a vehicle, camera, image sensor, industrial machine, satellite, gaming console

or controller, or home appliance such as a refrigerator, thermostat, energy meter, home energy

manager, smart home assistant, etc.); server computing devices (e.g., database servers, parameter

servers, file servers, mail servers, print servers, web servers, game servers, application servers,

etc.); dedicated, specialized model processing or training devices; virtual computing devices;

other computing devices or computing infrastructure; or combinations thereof.

Thus, in some implementations, the machine-learned model can be stored at and/or

implemented locally by an embedded device or a user computing device such as a mobile device.

Output data obtained through local implementation of the machine-learned model at the

embedded device or the user computing device can be used to improve performance of the

embedded device or the user computing device (e.g., an application implemented by the

embedded device or the user computing device). As one example, Figure 2 illustrates a block

diagram of an example computing device that stores and implements a machine-learned model

locally.

In other implementations, the machine-learned model can be stored at and/or

implemented by a server computing device. In some instances, output data obtained through

implementation of the machine-learned model at the server computing device can be used to

improve other server tasks or can be used by other non-user devices to improve services

performed by or for such other non-user devices. For example, the output data can improve other

downstream processes performed by the server computing device for a user computing device or

embedded computing device. In other instances, output data obtained through implementation of

the machine-learned model at the server computing device can be sent to and used by a user

20

Chai et al.: Item recommendations for cache and synchronization of application

Published by Technical Disclosure Commons, 2019

computing device, an embedded computing device, or some other client device. For example, the

server computing device can be said to perform machine learning as a service. As one example,

Figure 3 illustrates a block diagram of an example client computing device that can communicate

over a network with an example server computing system that includes a machine-learned

model.

In yet other implementations, different respective portions of the machine-learned model

can be stored at and/or implemented by some combination of a user computing device; an

embedded computing device; a server computing device; etc.

Computing devices can perform graph processing techniques or other machine learning

techniques using one or more machine learning platforms, frameworks, and/or libraries, such as,

for example, TensorFlow, Caffe/Caffe2, Theano, Torch/PyTorch, MXnet, CNTK, etc.

Computing devices can be distributed at different physical locations and connected via

one or more networks. Distributed computing devices can operate according to sequential

computing architectures, parallel computing architectures, or combinations thereof. In one

example, distributed computing devices can be controlled or guided through use of a parameter

server.

In some implementations, multiple instances of the machine-learned model can be

parallelized to provide increased processing throughput. For example, the multiple instances of

the machine-learned model can be parallelized on a single processing device or computing

device or parallelized across multiple processing devices or computing devices.

Each computing device that implements the machine-learned model or other aspects of

the present disclosure can include a number of hardware components that enable performance of

the techniques described herein. For example, each computing device can include one or more

21

Defensive Publications Series, Art. 1874 [2019]

https://www.tdcommons.org/dpubs_series/1874

memory devices that store some or all of the machine-learned model. For example, the machine-

learned model can be a structured numerical representation that is stored in memory. The one or

more memory devices can also include instructions for implementing the machine-learned model

or performing other operations. Example memory devices include RAM, ROM, EEPROM,

EPROM, flash memory devices, magnetic disks, etc., and combinations thereof.

Each computing device can also include one or more processing devices that implement

some or all of the machine-learned model and/or perform other related operations. Example

processing devices include one or more of: a central processing unit (CPU); a visual processing

unit (VPU); a graphics processing unit (GPU); a tensor processing unit (TPU); a neural

processing unit (NPU); a neural processing engine; a core of a CPU, VPU, GPU, TPU, NPU or

other processing device; an application specific integrated circuit (ASIC); a field programmable

gate array (FPGA); a co-processor; a controller; or combinations of the processing devices

described above. Processing devices can be embedded within other hardware components such

as, for example, an image sensor, accelerometer, etc.

Hardware components (e.g., memory devices and/or processing devices) can be spread

across multiple physically distributed computing devices and/or virtually distributed computing

systems.

In some implementations, the machine-learned models described herein can be trained at

a training computing system and then provided for storage and/or implementation at one or more

computing devices, as described above. For example, a model trainer can be located at the

training computing system. The training computing system can be included in or separate from

the one or more computing devices that implement the machine-learned model. As one example,

Figure 4 illustrates a block diagram of an example computing device in communication with an

22

Chai et al.: Item recommendations for cache and synchronization of application

Published by Technical Disclosure Commons, 2019

example training computing system that includes a model trainer.

In some implementations, the model can be trained in an offline fashion or an online

fashion. In offline training (also known as batch learning), a model is trained on the entirety of a

static set of training data. In online learning, the model is continuously trained (or re-trained) as

new training data becomes available (e.g., while the model is used to perform inference).

In some implementations, the model trainer can perform centralized training of the

machine-learned models (e.g., based on a centrally stored dataset). In other implementations,

decentralized training techniques such as distributed training, federated learning, or the like can

be used to train, update, or personalize the machine-learned models.

The machine-learned models described herein can be trained according to one or more of

various different training types or techniques. For example, in some implementations, the

machine-learned models can be trained using supervised learning, in which the machine-learned

model is trained on a training dataset that includes instances or examples that have labels. The

labels can be manually applied by experts, generated through crowd-sourcing, or provided by

other techniques (e.g., by physics-based or complex mathematical models). In some

implementations, if the user has provided consent, the training examples can be provided by the

user computing device. In some implementations, this process can be referred to as personalizing

the model.

As one example, Figure 5 illustrates a block diagram of an example training process in

which a machine-learned model is trained on training data that includes example input data that

has labels. Training processes other than the example process depicted in Figure 5 can be used as

well.

Training examples for the classification model include examples that represent the user

23

Defensive Publications Series, Art. 1874 [2019]

https://www.tdcommons.org/dpubs_series/1874

state at a certain time point and the (label of the) app that the user visited within a certain

duration, e.g., seven days, of time point. For example, positive training data comprises an

instance where a user visited a deep link of an app and followed it by a visit to the app within the

next seven days. A negative training example is an instance where a visit to a deep link is not

followed by a visit to the app within seven days. To generate training examples, a data extraction

tool extracts users’ deep link visits (with user permission) over a certain duration, e.g., the past

sixty-three days, and generates visit sequences. Each deep link visit generates a training example,

with the visited app being the label. Deep link visits are deduplicated if the visits are closely

spaced in time. To reduce the possibility of information leak, the deep link app label is excluded

from the historical deep link visited apps feature.

In some implementations, the machine-learned model can be trained by optimizing an

objective function. For example, in some implementations, the objective function can be or

include a loss function that compares (e.g., determines a difference between) output data

generated by the model from the training data and labels (e.g., ground-truth labels) associated

with the training data. For example, the loss function can evaluate a sum or mean of squared

differences between the output data and the labels. As another example, the objective function

can be or include a cost function that describes a cost of a certain outcome or output data. Other

objective functions can include margin-based techniques such as, for example, triplet loss or

maximum-margin training.

One or more of various optimization techniques can be performed to optimize the

objective function. For example, the optimization technique(s) can minimize or maximize the

objective function. Example optimization techniques include Hessian-based techniques and

gradient-based techniques, such as, for example, coordinate descent; gradient descent (e.g.,

24

Chai et al.: Item recommendations for cache and synchronization of application

Published by Technical Disclosure Commons, 2019

stochastic gradient descent); subgradient methods; etc. Other optimization techniques include

black box optimization techniques and heuristics.

In some implementations, backward propagation of errors can be used in conjunction with

an optimization technique (e.g., gradient based techniques) to train a model (e.g., a multi-layer

model such as an artificial neural network). For example, an iterative cycle of propagation and

model parameter (e.g., weights) update can be performed to train the model. Example

backpropagation techniques include truncated backpropagation through time, Levenberg-

Marquardt backpropagation, etc.

In some implementations, the machine-learned models described herein can be trained

using unsupervised learning techniques. Unsupervised learning can include inferring a function

to describe hidden structure from unlabeled data. For example, a classification or categorization

may not be included in the data. Unsupervised learning techniques can be used to produce

machine-learned models capable of performing clustering, anomaly detection, learning latent

variable models, or other tasks.

In some implementations, the machine-learned models described herein can be trained

using semi-supervised techniques which combine aspects of supervised learning and

unsupervised learning.

In some implementations, the machine-learned models described herein can be trained or

otherwise generated through evolutionary techniques or genetic algorithms.

In some implementations, the machine-learned models described herein can be trained

using reinforcement learning. In reinforcement learning, an agent (e.g., model) can take actions

in an environment and learn to maximize rewards and/or minimize penalties that result from such

actions. Reinforcement learning can differ from the supervised learning problem in that correct

25

Defensive Publications Series, Art. 1874 [2019]

https://www.tdcommons.org/dpubs_series/1874

input/output pairs are not presented, nor sub-optimal actions explicitly corrected.

In some implementations, one or more generalization techniques can be performed during

training to improve the generalization of the machine-learned model. Generalization techniques

can help reduce overfitting of the machine-learned model to the training data. Example

generalization techniques include dropout techniques; weight decay techniques; batch

normalization; early stopping; subset selection; stepwise selection; etc.

In some implementations, the machine-learned models described herein can include or

otherwise be impacted by a number of hyperparameters, such as, for example, learning rate,

number of layers, number of nodes in each layer, number of leaves in a tree, number of clusters;

etc. Hyperparameters can affect model performance. Hyperparameters can be hand selected or

can be automatically selected through application of techniques such as, for example, grid

search; black box optimization techniques (e.g., Bayesian optimization, random search, etc.);

gradient-based optimization; etc. Example techniques and/or tools for performing automatic

hyperparameter optimization include Hyperopt; Auto-WEKA; Spearmint; Metric Optimization

Engine (MOE); etc.

In some implementations, various techniques can be used to optimize and/or adapt the

learning rate when the model is trained. Example techniques and/or tools for performing learning

rate optimization or adaptation include Adagrad; Adaptive Moment Estimation (ADAM);

Adadelta; RMSprop; etc.

In some implementations, transfer learning techniques can be used to provide an initial

model from which to begin training of the machine-learned models described herein.

In some implementations, the machine-learned models described herein can be included

in different portions of computer-readable code on a computing device. In one example, the

26

Chai et al.: Item recommendations for cache and synchronization of application

Published by Technical Disclosure Commons, 2019

machine-learned model can be included in a particular application or program and used (e.g.,

exclusively) by such particular application or program. Thus, in one example, a computing

device can include a number of applications and one or more of such applications can contain its

own respective machine learning library and machine-learned model(s).

In another example, the machine-learned models described herein can be included in an

operating system of a computing device (e.g., in a central intelligence layer of an operating

system) and can be called or otherwise used by one or more applications that interact with the

operating system. In some implementations, each application can communicate with the central

intelligence layer (and model(s) stored therein) using an application programming interface

(API) (e.g., a common, public API across all applications).

In some implementations, the central intelligence layer can communicate with a central

device data layer. The central device data layer can be a centralized repository of data for the

computing device. The central device data layer can communicate with a number of other

components of the computing device, such as, for example, one or more sensors, a context

manager, a device state component, and/or additional components. In some implementations, the

central device data layer can communicate with each device component using an API (e.g., a

private API).

The technology discussed herein makes reference to servers, databases, software

applications, and other computer-based systems, as well as actions taken and information sent to

and from such systems. The inherent flexibility of computer-based systems allows for a great

variety of possible configurations, combinations, and divisions of tasks and functionality

between and among components. For instance, processes discussed herein can be implemented

using a single device or component or multiple devices or components working in combination.

27

Defensive Publications Series, Art. 1874 [2019]

https://www.tdcommons.org/dpubs_series/1874

Databases and applications can be implemented on a single system or distributed across multiple

systems. Distributed components can operate sequentially or in parallel.

In addition, the machine learning techniques described herein are readily interchangeable

and combinable. Although certain example techniques have been described, many others exist

and can be used in conjunction with aspects of the present disclosure.

Thus, while the present subject matter has been described in detail with respect to various

specific example implementations, each example is provided by way of explanation, not

limitation of the disclosure. One of ordinary skill in the art can readily make alterations to,

variations of, and equivalents to such implementations. Accordingly, the subject disclosure does

not preclude inclusion of such modifications, variations and/or additions to the present subject

matter as would be readily apparent to one of ordinary skill in the art. For instance, features

illustrated or described as part of one implementation can be used with another implementation

to yield a still further implementation.

A brief overview of example machine-learned models and associated techniques has been

provided by the present disclosure. For additional details, readers should review the following

references: Machine Learning A Probabilistic Perspective (Murphy); Rules of Machine

Learning: Best Practices for ML Engineering (Zinkevich); Deep Learning (Goodfellow);

Reinforcement Learning: An Introduction (Sutton); and Artificial Intelligence: A Modern

Approach (Norvig).

28

Chai et al.: Item recommendations for cache and synchronization of application

Published by Technical Disclosure Commons, 2019

Figures

29

Defensive Publications Series, Art. 1874 [2019]

https://www.tdcommons.org/dpubs_series/1874

30

Chai et al.: Item recommendations for cache and synchronization of application

Published by Technical Disclosure Commons, 2019

31

Defensive Publications Series, Art. 1874 [2019]

https://www.tdcommons.org/dpubs_series/1874

32

Chai et al.: Item recommendations for cache and synchronization of application

Published by Technical Disclosure Commons, 2019

	Technical Disclosure Commons
	January 11, 2019

	Item recommendations for cache and synchronization of application stores
	Wei Chai
	Zhiwei Gu
	Sundeep Sancheti
	Yilan Liu
	Recommended Citation

	tmp.1547139752.pdf.C_q_a

