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Item recommendations for cache and synchronization of application stores 

Introduction 

To reduce the latency of rendering the page of an app in an application store (e.g., that 

provides access to downloads of apps to a mobile device), the application store app periodically 

synchronizes with its backend and caches on the user mobile device app pages that a user is 

likely to visit.  

This disclosure uses deep learning models to predict the next N apps that a user is likely 

to visit based on permitted user activity signals, e.g., demographic information, historical visits 

to deep links associated with the app, etc.  

Keywords 

Machine learning; caching; app download; mobile apps; app page; deep links 

Summary 

Generally, the present disclosure is directed to recommending items for cache and 

synchronization of application stores, e.g., that provide downloads of software applications to a 

computing device. In particular, in some implementations, the systems and methods of the 

present disclosure can include or otherwise leverage one or more machine-learned models to 

predict the top N apps that a given user is likely to visit over the next X days based on user-

permitted factors such as country, language, age, installed apps, deep links pertaining to the app 

that the user visited previously, etc.  

In this context, a deep link is a URL outside the application store, e.g., a link that results 

from a search query, an ad, etc., that leads to the app within the application store. A user visit to 

a deep link is taken as a sign of potential interest in the app. Per the techniques of this disclosure, 

2

Chai et al.: Item recommendations for cache and synchronization of application

Published by Technical Disclosure Commons, 2019



the number of apps (N) and the selection of apps is personalized to the user.  

Detailed Description 

As described above, the present disclosure is directed to recommending items for cache 

and synchronization of application stores, e.g., that provide downloads of software applications 

to a computing device. In particular, in some implementations, the systems and methods of the 

present disclosure can include or otherwise leverage one or more machine-learned models to 

predict the top N apps that a given user is likely to visit over the next X days based on user-

permitted factors such as country, language, age, installed apps, deep links pertaining to the app 

that the user visited previously, etc.  

Figure 1 depicts a block diagram of an example machine-learned model according to 

example implementations of the present disclosure. As illustrated in Figure 1, in some 

implementations, the machine-learned model is trained to receive input data of one or more types 

and, in response, provide output data of one or more types. Thus, Figure 1 illustrates the 

machine-learned model performing inference. 

In some implementations, the input data can include one or more features that are 

associated with an instance or an example. In some implementations, the one or more features 

associated with the instance or example can be organized into a feature vector. In some 

implementations, the output data can include one or more predictions. Predictions can also be 

referred to as inferences. Thus, given features associated with a particular instance, the machine-

learned model can output a prediction for such instance based on the features. 

The machine-learned model can be or include one or more of various different types of 

machine-learned models. In particular, in some implementations, the machine-learned model can 
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perform classification, regression, clustering, anomaly detection, recommendation generation, 

and/or other tasks. 

In some implementations, the machine-learned model can perform various types of 

classification based on the input data. For example, the machine-learned model can perform 

binary classification or multiclass classification. In binary classification, the output data can 

include a classification of the input data into one of two different classes. In multiclass 

classification, the output data can include a classification of the input data into one (or more) of 

more than two classes. The classifications can be single label or multi-label.  

In some implementations, the machine-learned model can perform discrete categorical 

classification in which the input data is simply classified into one or more classes or categories. 

In some implementations, the machine-learned model can perform classification in which 

the machine-learned model provides, for each of one or more classes, a numerical value 

descriptive of a degree to which it is believed that the input data should be classified into the 

corresponding class. In some instances, the numerical values provided by the machine-learned 

model can be referred to as “confidence scores” that are indicative of a respective confidence 

associated with classification of the input into the respective class. In some implementations, the 

confidence scores can be compared to one or more thresholds to render a discrete categorical 

prediction. In some implementations, only a certain number of classes (e.g., one) with the 

relatively largest confidence scores can be selected to render a discrete categorical prediction. 

In some implementations, the machine-learned model can provide a probabilistic 

classification. For example, the machine-learned model can be able to predict, given a sample 

input, a probability distribution over a set of classes. Thus, rather than outputting only the most 

likely class to which the sample input should belong, the machine-learned model can output, for 
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each class, a probability that the sample input belongs to such class. In some implementations, 

the probability distribution over all possible classes can sum to one. In some implementations, a 

softmax function or layer can be used to squash a set of real values respectively associated with 

the possible classes to a set of real values in the range (0, 1) that sum to one.  

In some implementations, the probabilities provided by the probability distribution can be 

compared to one or more thresholds to render a discrete categorical prediction. In some 

implementations, only a certain number of classes (e.g., one) with the relatively largest predicted 

probability can be selected to render a discrete categorical prediction.  

In some implementations in which the machine-learned model performs classification, the 

machine-learned model can be trained using supervised learning techniques. For example, the 

machine-learned model can be trained on a training dataset that includes training examples 

labeled as belonging (or not belonging) to one or more classes. Further details regarding 

supervised training techniques are provided below. 

In some implementations, the machine-learned model can perform regression to provide 

output data in the form of a continuous numeric value. The continuous numeric value can 

correspond to any number of different metrics or numeric representations, including, for 

example, currency values, scores, or other numeric representations. As examples, the machine-

learned model can perform linear regression, polynomial regression, or nonlinear regression. As 

examples, the machine-learned model can perform simple regression or multiple regression. As 

described above, in some implementations, a softmax function or layer can be used to squash a 

set of real values respectively associated with a two or more possible classes to a set of real 

values in the range (0, 1) that sum to one. 

In some implementations, the machine-learned model can perform various types of 
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clustering. For example, the machine-learned model can identify one or more previously-defined 

clusters to which the input data most likely corresponds. As another example, the machine-

learned model can identify one or more clusters within the input data. That is, in instances in 

which the input data includes multiple objects, documents, or other entities, the machine-learned 

model can sort the multiple entities included in the input data into a number of clusters. In some 

implementations in which the machine-learned model performs clustering, the machine-learned 

model can be trained using unsupervised learning techniques. 

In some implementations, the machine-learned model can perform anomaly detection or 

outlier detection. For example, the machine-learned model can identify input data that does not 

conform to an expected pattern or other characteristic (e.g., as previously observed from previous 

input data). As examples, the anomaly detection can be used for fraud detection or system failure 

detection. 

In some implementations, the machine-learned model can provide output data in the form 

of one or more recommendations. For example, the machine-learned model can be included in a 

recommendation system or engine. As an example, given input data that describes previous 

outcomes for certain entities (e.g., a score, ranking, or rating indicative of an amount of success 

or enjoyment), the machine-learned model can output a suggestion or recommendation of one or 

more additional entities that, based on the previous outcomes, are expected to have a desired 

outcome (e.g., elicit a score, ranking, or rating indicative of success or enjoyment). As one 

example, given input data descriptive of a number of products purchased or rated highly by a 

user, a recommendation system can output a suggestion or recommendation of an additional 

product that the user might enjoy or wish to purchase. 

In some implementations, the machine-learned model can act as an agent within an 
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environment. For example, the machine-learned model can be trained using reinforcement 

learning, which will be discussed in further detail below. 

In some implementations, the machine-learned model can be a parametric model while, in 

other implementations, the machine-learned model can be a non-parametric model. In some 

implementations, the machine-learned model can be a linear model while, in other 

implementations, the machine-learned model can be a non-linear model.  

As described above, the machine-learned model can be or include one or more of various 

different types of machine-learned models. Examples of such different types of machine-learned 

models are provided below for illustration. One or more of the example models described below 

can be used (e.g., combined) to provide the output data in response to the input data. Additional 

models beyond the example models provided below can be used as well.  

In some implementations, the machine-learned model can be or include one or more 

classifier models such as, for example, linear classification models; quadratic classification 

models; etc. 

In some implementations, the machine-learned model can be or include one or more 

regression models such as, for example, simple linear regression models; multiple linear 

regression models; logistic regression models; stepwise regression models; multivariate adaptive 

regression splines; locally estimated scatterplot smoothing models; etc. 

In some implementations, the machine-learned model can be or include one or more 

decision tree-based models such as, for example, classification and/or regression trees; iterative 

dichotomiser 3 decision trees; C4.5 decision trees; chi-squared automatic interaction detection 

decision trees; decision stumps; conditional decision trees; etc. 
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In some implementations, the machine-learned model can be or include one or more 

kernel machines. In some implementations, the machine-learned model can be or include one or 

more support vector machines. 

In some implementations, the machine-learned model can be or include one or more 

instance-based learning models such as, for example, learning vector quantization models; self-

organizing map models; locally weighted learning models; etc. 

In some implementations, the machine-learned model can be or include one or more 

nearest neighbor models such as, for example, k-nearest neighbor classifications models; k-

nearest neighbors regression models; etc. 

In some implementations, the machine-learned model can be or include one or more 

Bayesian models such as, for example, naïve Bayes models; Gaussian naïve Bayes models; 

multinomial naïve Bayes models; averaged one-dependence estimators; Bayesian networks; 

Bayesian belief networks; hidden Markov models; etc. 

In some implementations, the machine-learned model can be or include one or more 

artificial neural networks (also referred to simply as neural networks). A neural network can 

include a group of connected nodes, which also can be referred to as neurons or perceptrons. A 

neural network can be organized into one or more layers. Neural networks that include multiple 

layers can be referred to as “deep” networks. A deep network can include an input layer, an 

output layer, and one or more hidden layers positioned between the input layer and the output 

layer. The nodes of the neural network can be connected or non-fully connected. 

In some implementations, the machine-learned model can be or include one or more feed 

forward neural networks. In feed forward networks, the connections between nodes do not form 

a cycle. For example, each connection can connect a node from an earlier layer to a node from a 
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later layer. 

In some instances, the machine-learned model can be or include one or more recurrent 

neural networks. . In some instances, at least some of the nodes of a recurrent neural network can 

form a cycle. Recurrent neural networks can be especially useful for processing input data that is 

sequential in nature. In particular, in some instances, a recurrent neural network can pass or 

retain information from a previous portion of the input data sequence to a subsequent portion of 

the input data sequence through the use of recurrent or directed cyclical node connections. 

As one example, sequential input data can include time-series data (e.g., sensor data 

versus time or imagery captured at different times). For example, a recurrent neural network can 

analyze sensor data versus time to detect or predict a swipe direction, to perform handwriting 

recognition, etc. As another example, sequential input data can include words in a sentence (e.g., 

for natural language processing, speech detection or processing, etc.); notes in a musical 

composition; sequential actions taken by a user (e.g., to detect or predict sequential application 

usage); sequential object states; etc. 

Example recurrent neural networks include long short-term (LSTM) recurrent neural 

networks; gated recurrent units; bi-directional recurrent neural networks; continuous time 

recurrent neural networks; neural history compressors; echo state networks; Elman networks; 

Jordan networks; recursive neural networks; Hopfield networks; fully recurrent networks; 

sequence-to-sequence configurations; etc. 

In some implementations, the machine-learned model can be or include one or more 

convolutional neural networks. In some instances, a convolutional neural network can include 

one or more convolutional layers that perform convolutions over input data using learned filters. 

Filters can also be referred to as kernels. Convolutional neural networks can be especially useful 
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for vision problems such as when the input data includes imagery such as still images or video. 

However, convolutional neural networks can also be applied for natural language processing.  

In some implementations, the machine-learned model can be or include one or more 

generative networks such as, for example, generative adversarial networks. Generative networks 

can be used to generate new data such as new images or other content. 

In some implementations, the machine-learned model can be or include an autoencoder. 

In some instances, the aim of an autoencoder is to learn a representation (e.g., a lower-

dimensional encoding) for a set of data, typically for the purpose of dimensionality reduction. 

For example, in some instances, an autoencoder can seek to encode the input data and then 

provide output data that reconstructs the input data from the encoding. Recently, the autoencoder 

concept has become more widely used for learning generative models of data. In some instances, 

the autoencoder can include additional losses beyond reconstructing the input data. 

In some implementations, the machine-learned model can be or include one or more other 

forms of artificial neural networks such as, for example, deep Boltzmann machines; deep belief 

networks; stacked autoencoders; etc. Any of the neural networks described herein can be 

combined (e.g., stacked) to form more complex networks. 

In some implementations, one or more neural networks can be used to provide an 

embedding based on the input data. For example, the embedding can be a representation of 

knowledge abstracted from the input data into one or more learned dimensions. In some 

instances, embeddings can be a useful source for identifying related entities. In some instances 

embeddings can be extracted from the output of the network, while in other instances 

embeddings can be extracted from any hidden node or layer of the network (e.g., a close to final 

but not final layer of the network). Embeddings can be useful for performing auto suggest next 
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video, product suggestion, entity or object recognition, etc. In some instances, embeddings be 

useful inputs for downstream models. For example, embeddings can be useful to generalize input 

data (e.g., search queries) for a downstream model or processing system. 

In some implementations, the machine-learned model can include one or more clustering 

models such as, for example, k-means clustering models; k-medians clustering models; 

expectation maximization models; hierarchical clustering models; etc.  

In some implementations, the machine-learned model can perform one or more 

dimensionality reduction techniques such as, for example, principal component analysis; kernel 

principal component analysis; graph-based kernel principal component analysis; principal 

component regression; partial least squares regression; Sammon mapping; multidimensional 

scaling; projection pursuit; linear discriminant analysis; mixture discriminant analysis; quadratic 

discriminant analysis; generalized discriminant analysis; flexible discriminant analysis; 

autoencoding; etc. 

In some implementations, the machine-learned model can perform or be subjected to one 

or more reinforcement learning techniques such as Markov decision processes; dynamic 

programming; Q functions or Q-learning; value function approaches; deep Q-networks; 

differentiable neural computers; asynchronous advantage actor-critics; deterministic policy 

gradient; etc. 

In some implementations, the machine-learned model can be an autoregressive model. In 

some instances, an autoregressive model can specify that the output data depends linearly on its 

own previous values and on a stochastic term. In some instances, an autoregressive model can 

take the form of a stochastic difference equation. One example autoregressive model is 

WaveNet, which is a generative model for raw audio. 
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In some implementations, the machine-learned model can include or form part of a 

multiple model ensemble. As one example, bootstrap aggregating can be performed, which can 

also be referred to as “bagging.” In bootstrap aggregating, a training dataset is split into a number 

of subsets (e.g., through random sampling with replacement) and a plurality of models are 

respectively trained on the number of subsets. At inference time, respective outputs of the 

plurality of models can be combined (e.g., through averaging, voting, or other techniques) and 

used as the output of the ensemble. 

One example model ensemble is a random forest, which can also be referred to as a 

random decision forest. Random forests are an ensemble learning method for classification, 

regression, and other tasks. Random forests are generated by producing a plurality of decision 

trees at training time. In some instances, at inference time, the class that is the mode of the 

classes (classification) or the mean prediction (regression) of the individual trees can be used as 

the output of the forest. Random decision forests can correct for decision trees' tendency to 

overfit their training set. 

Another example ensemble technique is stacking, which can, in some instances, be 

referred to as stacked generalization. Stacking includes training a combiner model to blend or 

otherwise combine the predictions of several other machine-learned models. Thus, a plurality of 

machine-learned models (e.g., of same or different type) can be trained based on training data. In 

addition, a combiner model can be trained to take the predictions from the other machine-learned 

models as inputs and, in response, produce a final inference or prediction. In some instances, a 

single-layer logistic regression model can be used as the combiner model. 

Another example ensemble technique is boosting. Boosting can include incrementally 

building an ensemble by iteratively training weak models and then adding to a final strong 

12

Chai et al.: Item recommendations for cache and synchronization of application

Published by Technical Disclosure Commons, 2019



model. For example, in some instances, each new model can be trained to emphasize the training 

examples that previous models misinterpreted (e.g., misclassified). For example, a weight 

associated with each of such misinterpreted examples can be increased. One common 

implementation of boosting is AdaBoost, which can also be referred to as Adaptive Boosting. 

Other example boosting techniques include LPBoost; TotalBoost; BrownBoost; xgboost; 

MadaBoost, LogitBoost, gradient boosting; etc. 

Furthermore, any of the models described above (e.g., regression models and artificial 

neural networks) can be combined to form an ensemble. As an example, an ensemble can include 

a top level machine-learned model or a heuristic function to combine and/or weight the outputs 

of the models that form the ensemble. 

In some implementations, multiple machine-learned models (e.g., that form an ensemble 

can be linked and trained jointly (e.g., through backpropagation of errors sequentially through 

the model ensemble). However, in some implementations, only a subset (e.g., one) of the jointly 

trained models is used for inference. 

In some implementations, the machine-learned model can be used to preprocess the input 

data for subsequent input into another model. For example, the machine-learned model can 

perform dimensionality reduction techniques and embeddings (e.g., matrix factorization, 

principal components analysis, singular value decomposition, word2vec/GLOVE, and/or related 

approaches); clustering; and even classification and regression for downstream consumption. 

Many of these techniques have been discussed above and will be further discussed below. 

Referring again to Figure 1, and as discussed above, the machine-learned model can be 

trained or otherwise configured to receive the input data and, in response, provide the output 

data. The input data can include different types, forms, or variations of input data. As examples, 
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in various implementations, the input data can include, with user permission,  a user’s country, 

language, age, installed apps, deep links pertaining to the app that the user visited, etc. In this 

context, a deep link is a URL outside the application store, e.g., a link that results from a search 

query, an ad, etc., that leads to the app within the application store. A user visit to a deep link is 

taken as a sign of potential interest in the app. 

In some implementations, the machine-learned model can receive and use the input data 

in its raw form. In some implementations, the raw input data can be preprocessed. Thus, in 

addition or alternatively to the raw input data, the machine-learned model can receive and use the 

preprocessed input data. 

In some implementations, preprocessing the input data can include extracting one or more 

additional features from the raw input data. For example, feature extraction techniques can be 

applied to the input data to generate one or more new, additional features. Example feature 

extraction techniques include edge detection; corner detection; blob detection; ridge detection; 

scale-invariant feature transform; motion detection; optical flow; Hough transform; etc. 

In some implementations, the extracted features can include or be derived from 

transformations of the input data into other domains and/or dimensions. As an example, the 

extracted features can include or be derived from transformations of the input data into the 

frequency domain. For example, wavelet transformations and/or fast Fourier transforms can be 

performed on the input data to generate additional features. 

In some implementations, the extracted features can include statistics calculated from the 

input data or certain portions or dimensions of the input data. Example statistics include the 

mode, mean, maximum, minimum, or other metrics of the input data or portions thereof. 

In some implementations, as described above, the input data can be sequential in nature. 
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In some instances, the sequential input data can be generated by sampling or otherwise 

segmenting a stream of input data. As one example, frames can be extracted from a video. In 

some implementations, sequential data can be made non-sequential through summarization. 

As another example preprocessing technique, portions of the input data can be imputed. 

For example, additional synthetic input data can be generated through interpolation and/or 

extrapolation. 

As another example preprocessing technique, some or all of the input data can be scaled, 

standardized, normalized, generalized, and/or regularized. Example regularization techniques 

include ridge regression; least absolute shrinkage and selection operator (LASSO); elastic net; 

least-angle regression; cross-validation; L1 regularization; L2 regularization; etc. As one 

example, some or all of the input data can be normalized by subtracting the mean across a given 

dimension’s feature values from each individual feature value and then dividing by the standard 

deviation or other metric. 

As another example preprocessing technique, some or all or the input data can be 

quantized or discretized. As yet another example, qualitative features or variables included in the 

input data can be converted to quantitative features or variables. For example, one hot encoding 

can be performed. 

In some implementations, dimensionality reduction techniques can be applied to the input 

data prior to input into the machine-learned model. Several examples of dimensionality reduction 

techniques are provided above, including, for example, principal component analysis; kernel 

principal component analysis; graph-based kernel principal component analysis; principal 

component regression; partial least squares regression; Sammon mapping; multidimensional 

scaling; projection pursuit; linear discriminant analysis; mixture discriminant analysis; quadratic 
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discriminant analysis; generalized discriminant analysis; flexible discriminant analysis; 

autoencoding; etc. 

In some implementations, during training, the input data can be intentionally deformed in 

any number of ways to increase model robustness, generalization, or other qualities. Example 

techniques to deform the input data include adding noise; changing color, shade, or hue; 

magnification; segmentation; amplification; etc. 

Referring again to Figure 1, in response to receipt of the input data, the machine-learned 

model can provide the output data. The output data can include different types, forms, or 

variations of output data. As examples, in various implementations, the output data can include 

predictions of the top N apps that a given user is likely to visit over the next X days, subject to 

minimizing cost, where cost includes the number of backend remote procedure calls (RPC), 

latency, etc.  

The prediction problem can also be formulated as a constrained optimization problem, 

e.g.,  

𝑎𝑟𝑔𝑚𝑎𝑥{𝑎𝑖,𝑁}𝑠𝑢𝑚𝑖(𝑝(𝑣𝑖𝑠𝑖𝑡 𝑎𝑖|𝑢𝑠𝑒𝑟, 𝑑𝑒𝑣𝑖𝑐𝑒)) 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡         𝑠𝑢𝑚( 𝑐𝑜𝑠𝑡({𝑎𝑖}, 𝑢𝑠𝑒𝑟, 𝑑𝑒𝑣𝑖𝑐𝑒) )  <=  𝑇, 

where  

ai is the ith of N apps;  

𝑝(𝑣𝑖𝑠𝑖𝑡 𝑎𝑖|𝑢𝑠𝑒𝑟, 𝑑𝑒𝑣𝑖𝑐𝑒)is the probability that a user operating a device will visit the app 

ai;  

𝑐𝑜𝑠𝑡( {𝑎𝑖}, 𝑢𝑠𝑒𝑟, 𝑑𝑒𝑣𝑖𝑐𝑒 ) is the cost of the visit; and  

T is an upper threshold on cost.  
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The prediction problem is decoupled into the following steps, e.g., 

1. predicting the probability of a given user to visit a particular app; and  

2. selecting optimal number of apps to sync for a given user. 

  

Predicting a user’s probability to visit a particular app - 𝑝(𝑣𝑖𝑠𝑖𝑡 𝑎𝑖|𝑢𝑠𝑒𝑟) 

A machine learning classification model based, e.g., on candidate generation, is trained to 

predict next visited deep link app using user-permitted factors such as country, language, age, 

installed apps, search queries, app usage, visited deep links pertaining to the app, etc. In this 

context, a deep link is a URL outside the application store, e.g., a link that results from a search 

query, an ad, etc., that leads to the app within the application store.  

A user visit to a deep link is taken as an indicator of potential interest in the app. Training 

examples for the classification model include examples that represent the user state at a certain 

time point and the (label of the) app that the user visited within a certain duration, e.g., seven 

days, of time point. For example, positive training data comprises an instance where a user 

visited a deep link of an app and followed it by a visit to the app within the next seven days. A 

negative training example is an instance where a visit to a deep link is not followed by a visit to 

the app within seven days.  

To generate training examples, a data extraction tool extracts users’ deep link visits (when 

permitted) over a certain duration, e.g., the past sixty-three days, and generates visit sequences. 

Each deep link visit generates a training example, with the visited app being the label. Deep link 

visits are deduplicated if the visits are closely spaced in time. To reduce the possibility of 

information leak, the deep link app label is excluded from the historical deep link visited apps 
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feature. 

 An example machine learning model that can be used to predict the probability of a user 

visiting an app is illustrated in Figure 6. As illustrated in that figure, a three-layer deep neural 

network learns on features such as the user’s country, language, installed apps, search queries, 

deep link visits, etc. In the example of Figure 6, the label is the current deep link visit.   

 

Selecting optimal number of apps (N) to sync for a given user  

 As mentioned before, the number of apps (N) is advantageously personalized to the user, 

such that more apps are cached if the user has good latency gains. If a user frequently visits deep 

links then such as user is given a relatively large N, and vice-versa. 

On the client side, cache and sync (C&S) gains for the user are obtained. The actual apps 

to be cached are determined based on the prediction score and collected gains. Since 

synchronization is batched, the number of apps to synchronize also accounts for batch size. The 

procedure to determine N for each user can be initialized with a fixed N across all users.  

The number of apps for a given user is maintained between a certain minimum, to ensure 

a threshold of gains for the user, and a certain maximum, so as to not overwhelm the backend. A 

technique to keep the number of apps between a minimum and maximum is to make the number 

of apps a piecewise linear function of the C&S latency gain, e.g.,  

Number of apps to sync =  𝑀𝐼𝑁𝐴𝑃𝑃𝑆 + 𝑀𝐴𝑋𝐴𝑃𝑃𝑆 ∗   (𝑐𝑠𝑔𝑎𝑖𝑛 −  𝑎) / (𝑏 − 𝑎), 

where the parameters MINAPPS, MAXAPPS, a and b can be determined offline, e.g., 

through experimentation. 

Figure 7 illustrates the number of apps to sync versus the C&S latency gain when 

18

Chai et al.: Item recommendations for cache and synchronization of application

Published by Technical Disclosure Commons, 2019



MINAPPS=20, MAXAPPS=120, a=1 and b=2. In this example, the client device fetches at least 

20 apps and at most 120 apps. If C&S latency gain is between 1 and 2, the number of apps 

fetched varies linearly with C&S latency gain.  

As discussed above, in some implementations, the output data can include various types 

of classification data (e.g., binary classification, multiclass classification, single label, multi-

label, discrete classification, regressive classification, probabilistic classification, etc.) or can 

include various types of regressive data (e.g., linear regression, polynomial regression, nonlinear 

regression, simple regression, multiple regression, etc.). In other instances, the output data can 

include clustering data, anomaly detection data, recommendation data, or any of the other forms 

of output data discussed above. 

In some implementations, the output data can influence downstream processes or decision 

making. As one example, in some implementations, the output data can be interpreted and/or 

acted upon by a rules-based regulator. 

Thus, the present disclosure provides systems and methods that include or otherwise 

leverage one or more machine-learned models to predict the top N apps that a given user is likely 

to visit over the next X days based on user-permitted factors such as country, language, age, 

installed apps, deep links pertaining to the app that the user visited, etc. Any of the different 

types or forms of input data described above can be combined with any of the different types or 

forms of machine-learned models described above to provide any of the different types or forms 

of output data described above. 

The systems and methods of the present disclosure can be implemented by or otherwise 

executed on one or more computing devices. Example computing devices include user 

computing devices (e.g., laptops, desktops, and mobile computing devices such as tablets, 
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smartphones, wearable computing devices, etc.); embedded computing devices (e.g., devices 

embedded within a vehicle, camera, image sensor, industrial machine, satellite, gaming console 

or controller, or home appliance such as a refrigerator, thermostat, energy meter, home energy 

manager, smart home assistant, etc.); server computing devices (e.g., database servers, parameter 

servers, file servers, mail servers, print servers, web servers, game servers, application servers, 

etc.); dedicated, specialized model processing or training devices; virtual computing devices; 

other computing devices or computing infrastructure; or combinations thereof. 

Thus, in some implementations, the machine-learned model can be stored at and/or 

implemented locally by an embedded device or a user computing device such as a mobile device. 

Output data obtained through local implementation of the machine-learned model at the 

embedded device or the user computing device can be used to improve performance of the 

embedded device or the user computing device (e.g., an application implemented by the 

embedded device or the user computing device). As one example, Figure 2 illustrates a block 

diagram of an example computing device that stores and implements a machine-learned model 

locally. 

In other implementations, the machine-learned model can be stored at and/or 

implemented by a server computing device. In some instances, output data obtained through 

implementation of the machine-learned model at the server computing device can be used to 

improve other server tasks or can be used by other non-user devices to improve services 

performed by or for such other non-user devices. For example, the output data can improve other 

downstream processes performed by the server computing device for a user computing device or 

embedded computing device. In other instances, output data obtained through implementation of 

the machine-learned model at the server computing device can be sent to and used by a user 
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computing device, an embedded computing device, or some other client device. For example, the 

server computing device can be said to perform machine learning as a service. As one example, 

Figure 3 illustrates a block diagram of an example client computing device that can communicate 

over a network with an example server computing system that includes a machine-learned 

model. 

In yet other implementations, different respective portions of the machine-learned model 

can be stored at and/or implemented by some combination of a user computing device; an 

embedded computing device; a server computing device; etc.  

Computing devices can perform graph processing techniques or other machine learning 

techniques using one or more machine learning platforms, frameworks, and/or libraries, such as, 

for example, TensorFlow, Caffe/Caffe2, Theano, Torch/PyTorch, MXnet, CNTK, etc. 

Computing devices can be distributed at different physical locations and connected via 

one or more networks. Distributed computing devices can operate according to sequential 

computing architectures, parallel computing architectures, or combinations thereof. In one 

example, distributed computing devices can be controlled or guided through use of a parameter 

server. 

In some implementations, multiple instances of the machine-learned model can be 

parallelized to provide increased processing throughput. For example, the multiple instances of 

the machine-learned model can be parallelized on a single processing device or computing 

device or parallelized across multiple processing devices or computing devices.  

Each computing device that implements the machine-learned model or other aspects of 

the present disclosure can include a number of hardware components that enable performance of 

the techniques described herein. For example, each computing device can include one or more 
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memory devices that store some or all of the machine-learned model. For example, the machine-

learned model can be a structured numerical representation that is stored in memory. The one or 

more memory devices can also include instructions for implementing the machine-learned model 

or performing other operations. Example memory devices include RAM, ROM, EEPROM, 

EPROM, flash memory devices, magnetic disks, etc., and combinations thereof. 

Each computing device can also include one or more processing devices that implement 

some or all of the machine-learned model and/or perform other related operations. Example 

processing devices include one or more of: a central processing unit (CPU); a visual processing 

unit (VPU); a graphics processing unit (GPU); a tensor processing unit (TPU); a neural 

processing unit (NPU); a neural processing engine; a core of a CPU, VPU, GPU, TPU, NPU or 

other processing device; an application specific integrated circuit (ASIC); a field programmable 

gate array (FPGA); a co-processor; a controller; or combinations of the processing devices 

described above. Processing devices can be embedded within other hardware components such 

as, for example, an image sensor, accelerometer, etc.  

Hardware components (e.g., memory devices and/or processing devices) can be spread 

across multiple physically distributed computing devices and/or virtually distributed computing 

systems. 

In some implementations, the machine-learned models described herein can be trained at 

a training computing system and then provided for storage and/or implementation at one or more 

computing devices, as described above. For example, a model trainer can be located at the 

training computing system. The training computing system can be included in or separate from 

the one or more computing devices that implement the machine-learned model. As one example, 

Figure 4 illustrates a block diagram of an example computing device in communication with an 
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example training computing system that includes a model trainer. 

In some implementations, the model can be trained in an offline fashion or an online 

fashion. In offline training (also known as batch learning), a model is trained on the entirety of a 

static set of training data. In online learning, the model is continuously trained (or re-trained) as 

new training data becomes available (e.g., while the model is used to perform inference). 

In some implementations, the model trainer can perform centralized training of the 

machine-learned models (e.g., based on a centrally stored dataset). In other implementations, 

decentralized training techniques such as distributed training, federated learning, or the like can 

be used to train, update, or personalize the machine-learned models.  

The machine-learned models described herein can be trained according to one or more of 

various different training types or techniques. For example, in some implementations, the 

machine-learned models can be trained using supervised learning, in which the machine-learned 

model is trained on a training dataset that includes instances or examples that have labels. The 

labels can be manually applied by experts, generated through crowd-sourcing, or provided by 

other techniques (e.g., by physics-based or complex mathematical models). In some 

implementations, if the user has provided consent, the training examples can be provided by the 

user computing device. In some implementations, this process can be referred to as personalizing 

the model. 

As one example, Figure 5 illustrates a block diagram of an example training process in 

which a machine-learned model is trained on training data that includes example input data that 

has labels. Training processes other than the example process depicted in Figure 5 can be used as 

well. 

Training examples for the classification model include examples that represent the user 
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state at a certain time point and the (label of the) app that the user visited within a certain 

duration, e.g., seven days, of time point. For example, positive training data comprises an 

instance where a user visited a deep link of an app and followed it by a visit to the app within the 

next seven days. A negative training example is an instance where a visit to a deep link is not 

followed by a visit to the app within seven days. To generate training examples, a data extraction 

tool extracts users’ deep link visits (with user permission) over a certain duration, e.g., the past 

sixty-three days, and generates visit sequences. Each deep link visit generates a training example, 

with the visited app being the label. Deep link visits are deduplicated if the visits are closely 

spaced in time. To reduce the possibility of information leak, the deep link app label is excluded 

from the historical deep link visited apps feature. 

In some implementations, the machine-learned model can be trained by optimizing an 

objective function. For example, in some implementations, the objective function can be or 

include a loss function that compares (e.g., determines a difference between) output data 

generated by the model from the training data and labels (e.g., ground-truth labels) associated 

with the training data. For example, the loss function can evaluate a sum or mean of squared 

differences between the output data and the labels. As another example, the objective function 

can be or include a cost function that describes a cost of a certain outcome or output data. Other 

objective functions can include margin-based techniques such as, for example, triplet loss or 

maximum-margin training. 

One or more of various optimization techniques can be performed to optimize the 

objective function. For example, the optimization technique(s) can minimize or maximize the 

objective function. Example optimization techniques include Hessian-based techniques and 

gradient-based techniques, such as, for example, coordinate descent; gradient descent (e.g., 
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stochastic gradient descent); subgradient methods; etc. Other optimization techniques include 

black box optimization techniques and heuristics. 

In some implementations, backward propagation of errors can be used in conjunction with 

an optimization technique (e.g., gradient based techniques) to train a model (e.g., a multi-layer 

model such as an artificial neural network). For example, an iterative cycle of propagation and 

model parameter (e.g., weights) update can be performed to train the model. Example 

backpropagation techniques include truncated backpropagation through time, Levenberg-

Marquardt backpropagation, etc. 

In some implementations, the machine-learned models described herein can be trained 

using unsupervised learning techniques. Unsupervised learning can include inferring a function 

to describe hidden structure from unlabeled data. For example, a classification or categorization 

may not be included in the data. Unsupervised learning techniques can be used to produce 

machine-learned models capable of performing clustering, anomaly detection, learning latent 

variable models, or other tasks. 

In some implementations, the machine-learned models described herein can be trained 

using semi-supervised techniques which combine aspects of supervised learning and 

unsupervised learning. 

In some implementations, the machine-learned models described herein can be trained or 

otherwise generated through evolutionary techniques or genetic algorithms.  

In some implementations, the machine-learned models described herein can be trained 

using reinforcement learning. In reinforcement learning, an agent (e.g., model) can take actions 

in an environment and learn to maximize rewards and/or minimize penalties that result from such 

actions. Reinforcement learning can differ from the supervised learning problem in that correct 
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input/output pairs are not presented, nor sub-optimal actions explicitly corrected.  

In some implementations, one or more generalization techniques can be performed during 

training to improve the generalization of the machine-learned model. Generalization techniques 

can help reduce overfitting of the machine-learned model to the training data. Example 

generalization techniques include dropout techniques; weight decay techniques; batch 

normalization; early stopping; subset selection; stepwise selection; etc. 

In some implementations, the machine-learned models described herein can include or 

otherwise be impacted by a number of hyperparameters, such as, for example, learning rate, 

number of layers, number of nodes in each layer, number of leaves in a tree, number of clusters; 

etc. Hyperparameters can affect model performance. Hyperparameters can be hand selected or 

can be automatically selected through application of techniques such as, for example, grid 

search; black box optimization techniques (e.g., Bayesian optimization, random search, etc.); 

gradient-based optimization; etc. Example techniques and/or tools for performing automatic 

hyperparameter optimization include Hyperopt; Auto-WEKA; Spearmint; Metric Optimization 

Engine (MOE); etc. 

In some implementations, various techniques can be used to optimize and/or adapt the 

learning rate when the model is trained. Example techniques and/or tools for performing learning 

rate optimization or adaptation include Adagrad; Adaptive Moment Estimation (ADAM); 

Adadelta; RMSprop; etc. 

In some implementations, transfer learning techniques can be used to provide an initial 

model from which to begin training of the machine-learned models described herein. 

In some implementations, the machine-learned models described herein can be included 

in different portions of computer-readable code on a computing device. In one example, the 

26

Chai et al.: Item recommendations for cache and synchronization of application

Published by Technical Disclosure Commons, 2019



machine-learned model can be included in a particular application or program and used (e.g., 

exclusively) by such particular application or program. Thus, in one example, a computing 

device can include a number of applications and one or more of such applications can contain its 

own respective machine learning library and machine-learned model(s).  

In another example, the machine-learned models described herein can be included in an 

operating system of a computing device (e.g., in a central intelligence layer of an operating 

system) and can be called or otherwise used by one or more applications that interact with the 

operating system. In some implementations, each application can communicate with the central 

intelligence layer (and model(s) stored therein) using an application programming interface 

(API) (e.g., a common, public API across all applications). 

In some implementations, the central intelligence layer can communicate with a central 

device data layer. The central device data layer can be a centralized repository of data for the 

computing device. The central device data layer can communicate with a number of other 

components of the computing device, such as, for example, one or more sensors, a context 

manager, a device state component, and/or additional components. In some implementations, the 

central device data layer can communicate with each device component using an API (e.g., a 

private API). 

The technology discussed herein makes reference to servers, databases, software 

applications, and other computer-based systems, as well as actions taken and information sent to 

and from such systems. The inherent flexibility of computer-based systems allows for a great 

variety of possible configurations, combinations, and divisions of tasks and functionality 

between and among components. For instance, processes discussed herein can be implemented 

using a single device or component or multiple devices or components working in combination. 
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Databases and applications can be implemented on a single system or distributed across multiple 

systems. Distributed components can operate sequentially or in parallel. 

In addition, the machine learning techniques described herein are readily interchangeable 

and combinable. Although certain example techniques have been described, many others exist 

and can be used in conjunction with aspects of the present disclosure. 

Thus, while the present subject matter has been described in detail with respect to various 

specific example implementations, each example is provided by way of explanation, not 

limitation of the disclosure. One of ordinary skill in the art can readily make alterations to, 

variations of, and equivalents to such implementations. Accordingly, the subject disclosure does 

not preclude inclusion of such modifications, variations and/or additions to the present subject 

matter as would be readily apparent to one of ordinary skill in the art. For instance, features 

illustrated or described as part of one implementation can be used with another implementation 

to yield a still further implementation. 

A brief overview of example machine-learned models and associated techniques has been 

provided by the present disclosure. For additional details, readers should review the following 

references: Machine Learning A Probabilistic Perspective (Murphy); Rules of Machine 

Learning: Best Practices for ML Engineering (Zinkevich); Deep Learning (Goodfellow); 

Reinforcement Learning: An Introduction (Sutton); and Artificial Intelligence: A Modern 

Approach (Norvig).  
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