
Technical Disclosure Commons

Defensive Publications Series

January 10, 2019

Direct I/O solution for Containerized HPUX
Maheshwara Aithal
Hewlett Packard Enterprise

Dinesh Thanumoorthy
Hewlett Packard Enterprise

Harish K
Hewlett Packard Enterprise

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Aithal, Maheshwara; Thanumoorthy, Dinesh; and K, Harish, "Direct I/O solution for Containerized HPUX", Technical Disclosure
Commons, (January 10, 2019)
https://www.tdcommons.org/dpubs_series/1870

https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F1870&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1870&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1870&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/1870?utm_source=www.tdcommons.org%2Fdpubs_series%2F1870&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Direct I/O solution for Containerized HPUX

Abstract

This disclosure relates to the field of hardware emulation solution called c-UX (code named Kiran)

which runs HPUX in emulated (Itanium hardware emulation on x86) mode as a futuristic solution for

the margin rich UNIX business. The value of containerized HPUX is that it allows customers using

legacy HPUX applications to continue running on x86 hardware. c-UX design relies on instruction level

emulation which has inherent performance issues. Especially, compute intensive workloads are prone to

performance issues while running in emulated environment. However, I/O workloads on such emulated

systems can make use of direct device access or device assignment when configured for the highest

possible I/O performance. This technique provides the most efficient way to do I/O, compared to other

approaches such as device emulation, which imposes a high number of exits from guest context, with the

benefits of significantly reduced latency, higher bandwidth, and direct use of bare-metal device drivers.

The proposal presents an innovative approach to realize Direct I/O mechanism (a.k.a PCI passthrough)

on emulated HPUX environment by leveraging Virtual Function I/O framework in Linux. Disclosed is

an approach of accelerating I/O performance in c-UX application by allowing the emulated HPUX

Operating System direct access to parts of the I/O subsystem of the host and handle various aspects of

the communication like DMA and interrupts. It also throws light on the network I/O performance

improvement that is achieved on c-UX, using this method.

Problem statement

The c-UX or Containerized-UX is a solution that can emulate Itanium System on x86-64. It is a user

space application that emulates all hardware components of Itanium required to run HPUX OS.

Currently, we’re experiencing slower rates of I/O on c-UX guest and there is a need to boost the I/O

performance by driving maximum throughput on I/O interface to achieve optimum results and get the

full value of emulation. Also, we’re in need of a common, light-weight, secure, user space I/O

framework to avoid using specialized kernel drivers that have to go through the full development cycle

and be maintained out of tree. The PCI passthrough technique would solve all these problems but the

challenge is to implement a comprehending solution for emulated HPUX on Linux environment.

Competitive approaches
Other techniques include para virtualization or VirtIO model, device emulation model etc. These models

need specialized kernel drivers that have to either go through the full development cycle, be maintained

out of tree, or make use of the UIO framework, which has no notion of IOMMU protection, limited

interrupt support, and requires root privileges to access things like PCI configuration space. The VFIO

kernel infrastructure intends to provide a more feature full user space driver environment within a highly

secure and programmable IOMMU context, promising near line-speed.

2

Aithal et al.: Direct I/O solution for Containerized HPUX

Published by Technical Disclosure Commons, 2019

Proposed Solution

Direct I/O mechanism significantly improves the performance by eliminating the device emulation

overhead. This method allows the guest HPUX operating system on c-UX to directly access the I/O

devices present in the system. From a device and host perspective, this simply turns the VM into a user

space driver. Since exits from guest context to the hypervisor are not needed in order to emulate aspects

of the device, some applications running on the servers, particularly in the mission critical and high

performance computing field, benefit from relatively low-overhead access from user space. This

solution takes advantage of the VFIO framework in Linux to emulate certain parts of the device and to

manage the other aspects of device handling like MMIO access, DMA and interrupts by bypassing the

host kernel.

VFIO (Virtual Function I/O) is an open source device agnostic framework, for exposing direct device

access to user space, in a secure, IOMMU protected environment. An IOMMU is a hardware block,

comparable to the MMU of the CPU, which intercepts any memory access from the device and

translates the memory addresses, from virtual addresses to physical addresses. Initially, when VFIO is

loaded on the host Linux system, a bus specific module (the VFIO bus driver) binds to the device,

usually discoverable by some kind of bus specific mechanism, such as the PCI configuration space.

Then, using the standard VFIO APIs in c-UX, device’s MMIO and DMA regions are mapped to guest

memory securely, allowing the HPUX guest to claim the interface, while the x86_64 host can handle

and forward incoming interrupts. VFIO also allows to pool the devices that needs to be assigned to the

same HPUX guest, thereby enabling the devices to share the same IOMMU TLB.

Fig1 An overview of DIO emulator framework components with a snapshot of datapath

3

Defensive Publications Series, Art. 1870 [2019]

https://www.tdcommons.org/dpubs_series/1870

Handling Configuration/MMIO space access: In c-UX, a DIO emulator framework is developed that is

furnished with device specific information like host hardware path etc. which is eventually parsed and

used to populate the device on guest. VFIO abstracts PCI devices as different regions like PCI

configuration space, MMIO and I/O port BAR spaces, MSI-X or IRQ spaces etc. We’ve used the VFIO

APIs to query such information and emulate the device so that it can be discovered on guest PCI

environment. During the guest boot up, c-UX intercepts and emulates attempts by the guest OS to access

PCI config space and MMIO space of the device. Emulation of the device registers is achieved by

hooking the interface specific I/O handlers directly to the existing facilities of c-UX. The host BAR

address space of the device will be mapped to the guest address space using the standard HPUX WSIO

functionality. This way, using the VFIO standard interface, the PCI devices behind an IOMMU is

unmapped from the host operating system, and subsequently map to c-UX virtual address space. The

unmodified HPUX network driver will claim the exposed device on guest, followed by the initialization,

configuration and port link up.

Handling DMA: In this case, the IOMMU is programmed with the Linux host user virtual address of the

entire c-UX application, to map the HPUX guest memory with the host physical memory space,

enabling the device to do DMA directly to the guest space, eliminating the buffer copy overhead. By

configuring the IOMMU this way, the network device will operate under the illusion that they are

directly accessing the physical memory of the Linux host, while they have actually been mapped to the

memory space of HPUX running on c-UX. The IOMMU will prevent the hardware components behind

IOMMU from accessing memory beyond the mappings that have been assigned in the page tables

thereby protecting the c-UX system from accesses to memory from the device. Multiple devices can be

shared to the same guest by pooling them together by creating VFIO containers, which handles the

DMA mapping/unmapping and not the device.

Handling Interrupts: MSI-X is the most efficient way to spread interrupts from one device among

multiple cores. VFIO provides standard interfaces to configure and interact with the MSI-X/IRQ signals

of the device. The device signals the host driver using interrupts. And in this design, the guest is

interrupted using eventfd, a file descriptor for event notification. Eventfd creates an eventfd object that

can be used as an event wait/notify mechanism by the emulator running in the user space and by the

kernel to notify guest operating system of events. During the MSI-X initialization on guest, the HPUX

vector details are gathered by intercepting the MMIO writes using the device MMIO handlers on c-UX.

For every vector on guest, a corresponding MSI-X vector is allotted on the device via VFIO, and each

vector is assigned a handler (pthread in this case) on the host, along with an eventfd for notification.

When an IRQ is being triggered, the eventfd wakes up the handler, which will notify the HPUX guest

with the corresponding IRQ details that are already stored in the handler.

4

Aithal et al.: Direct I/O solution for Containerized HPUX

Published by Technical Disclosure Commons, 2019

Fig.2 Describing interaction between various modules via DIO emulator on a Linux system

Performance: The DIO model delivers the best performance when implemented within multi-core

processor environments by efficient distribution of I/O workloads across CPU cores. Load balancing of

interrupts using MSI-X enables more efficient response times and application performance. By avoiding

the Rx side of the copy with DMA, this method results in better CPU utilization on virtualized servers.

I/O emulation overhead applies for PCI configuration access only which is viewed as control path access

and not in the performance path, thereby exhibiting near native performance.

5

Defensive Publications Series, Art. 1870 [2019]

https://www.tdcommons.org/dpubs_series/1870

	Technical Disclosure Commons
	January 10, 2019

	Direct I/O solution for Containerized HPUX
	Maheshwara Aithal
	Dinesh Thanumoorthy
	Harish K
	Recommended Citation

	tmp.1547071630.pdf.w6Vhc

