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Fast & Scalable I/O for Emulated HPUX 

 

Abstract 

HPE has positioned containerized solution called c-UX (code named Kiran) which runs HPUX in 

emulated (Itanium hardware emulation on x86) mode as a futuristic solution for the margin rich UNIX 

business. The value of containerized HPUX is that it allows customers using legacy HPUX applications 

to continue running on x86 hardware. Significant effort has been expended to increase the effectiveness 

of hardware resource utilization on c-UX. The next step in fully optimizing I/O in c-UX environment is 

to provide truly scalable high-performance, by enabling a single I/O device to provide DMA for multiple 

VMs. This scalability challenge can be solved using Single Root I/O Virtualization (SR-IOV) technology, 

delivering near-native I/O performance for multiple c-UX instances, while also providing memory and 

traffic isolation for security and high availability, accelerating live migrations, and reducing the cost 

and complexity of I/O solutions. Network and Storage adapters from various vendors can be used to 

realize SR-IOV on c-UX, which otherwise was not possible on native HPUX due to hardware and 

firmware limitations. This paper talks about an innovative mechanism to enable SR-IOV on emulated 

HPUX OS using Virtual Function I/O framework (VFIO) available in Linux. Disclosed is an approach 

of achieving highly scalable performance in c-UX application by allowing the guest OS direct access to 

parts of the I/O subsystem of the host and handle various aspects of the communication like DMA and 

interrupts. It also throws light on the network I/O performance gains achieved using this method. 

 

Problem statement 

The c-UX is a solution that can emulate Itanium System on x86-64. It is a user space application that 

emulates all hardware components of Itanium required to run HPUX OS, but with inherent performance 

issues. However, certain I/O workloads on c-UX can make use of direct device access or device 

assignment technique to deliver the highest possible I/O performance. Scalability challenges remain 

though, since these I/O virtualization solutions require a dedicated physical I/O port for each guest OS 

instance. Currently, there is a need to optimize I/O performance by enabling efficient and scalable I/O 

device sharing across various c-UX instances. Single Root I/O Virtualization (SR-IOV) can be used to 

support large numbers of direct assigned VMs per adapter to dramatically improve scalability, 

performance and slot utilization, while also reducing I/O-related power consumption and cabling 

requirements. The challenge here is to implement a comprehending solution for emulated HPUX on 

Linux environment that is scalable and performing. As such, SR-IOV ecosystem requires support from 

the OS and system firmware (UEFI), which is currently unsupported on HPUX - is being realized on c-

UX via PCI pass through method on Linux without any kernel changes and with a new device driver on 

guest OS. 

 

Competitive approaches 

Other techniques include VMDq, VirtIO model, DPDK, device emulation model etc. With VMDq, the 

functionality will be limited as we can only share Tx/Rx queues. Non-VFIO models need specialized 

kernel drivers that have to either go through the full development cycle, be maintained out of tree, or 

make use of the UIO framework, which has no notion of IOMMU protection, limited interrupt support, 

and requires root privileges to access things like PCI configuration space. The hardware assisted SR-

IOV consumes approximately 40% less cycles than the para virtualized driver VirtIO for both sending 
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and receiving. 

 

Proposed solution 

SR-IOV defines a method to share a physical function of the I/O port of a device without software 

emulation. This process creates a number of VFs (Virtual Functions) per physical port of the I/O device. 

Each VF acts as an independent but lightweight PCIe device, capable of being configured for data traffic 

movement. There are also PFs (Physical Functions) which contain full PCIe functions and can be used 

to configure SR-IOV enabled devices. In this solution, VFs are directly assigned to guest OS, using 

VFIO in Linux by emulating certain parts of the VF and managing other aspects of device handling like 

MMIO access, DMA and interrupts by bypassing the host kernel, thereby achieving near native 

performance. 

 

VFIO (Virtual Function I/O) is an open source device agnostic framework, for exposing direct device 

access to user space, in a secure, IOMMU protected environment. An IOMMU is a hardware block, 

comparable to the MMU of the CPU, which intercepts any memory access from the device and 

translates the memory addresses, from virtual addresses to physical addresses. Initially, both VF and PF 

will be claimed by the corresponding host drivers. Then, the VF is unbind from host driver and bind it to 

the VFIO module. Using the standard VFIO APIs, the VF’s MMIO and DMA regions are mapped to 

guest memory securely, allowing the HPUX guest to claim the VF interface, while the x86_64 host can 

handle and forward incoming interrupts. The VF driver – a new para-virtualized driver on HPUX guest 

communicates directly with the hardware to perform data movement operations via APIs exposed to c-

UX and rely on the services of the PF driver to handle operations that can have global impact, like 

configuration, initialization and control of the secondary fabric. 

 

      

 

Fig.1 Example showing VF being exported to HPUX running on c-UX 
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Handling Configuration/MMIO space access: In c-UX, a DIO emulator framework is developed that is 

furnished with VF device specific information like host hardware path etc. which is eventually parsed 

and used to populate the VF device on guest. VFIO abstracts PCI devices as different regions like PCI 

configuration space, MMIO and I/O port BAR spaces, MSI-X or IRQ spaces etc. We’ve used the VFIO 

APIs to query such information and emulate the configuration space of VF, so that it can be discovered 

on guest PCI environment. During the guest boot up, c-UX intercepts and emulates attempts by the guest 

OS to access PCI config space and MMIO space of the device. Emulation of the VF registers is achieved 

by hooking the interface specific I/O handlers directly to the existing facilities of c-UX. The host BAR 

address space of the VF interface will be mapped to the guest address space using the standard HPUX 

WSIO functionality. This way, using the VFIO standard interface, PCI devices behind an IOMMU is 

unmapped from the host operating system, and subsequently map to c-UX virtual address space. On 

HPUX, VF is loaded based upon the Device ID presented to the guest as part of the PCI configuration 

information from the c-UX. The VFs have a unique Device ID using which the appropriate driver can be 

loaded. The new HPUX VF driver will claim the exposed device on guest, followed by the initialization, 

configuration and port link up. The communication between VF and PF is implemented in HPUX 

utilizing a set of hardware mailboxes and doorbells within the I/O controller for each VF. 

 

Handling DMA: In this case, the IOMMU is programmed with the Linux host user virtual address of the 

entire c-UX application, to map the HPUX guest memory with the host physical memory space, 

enabling the device to do DMA directly to the guest space, eliminating the buffer copy overhead. By 

configuring the IOMMU this way, the I/O device will operate under the illusion that it is directly 

accessing the physical memory of the Linux host, while it has actually been mapped to the memory 

space of HPUX running on c-UX. The IOMMU will prevent the hardware components behind IOMMU 

from accessing memory beyond the mappings that have been assigned in the page tables thereby 

protecting the c-UX system from accesses to memory from the device. Multiple devices can be shared to 

the same guest by pooling them together by creating VFIO containers, which handles the DMA 

mapping/unmapping and not the device. 

 

Handling Interrupts: MSI-X is the most efficient way to spread interrupts from one device among 

multiple cores. VFIO provides standard interfaces to configure and interact with the MSI-X/IRQ signals 

of the device. The device signals the host driver using interrupts. And in this design, the guest is 

interrupted using eventfd, a file descriptor for event notification. Eventfd creates an eventfd object that 

can be used as an event wait/notify mechanism by the emulator running in the user space and by the 

kernel to notify guest operating system of events. During the MSI-X initialization on guest, the HPUX 

vector details are gathered by intercepting the MMIO writes using the device MMIO handlers on c-UX. 

For every vector on guest, a corresponding MSI-X vector is allotted on the device via VFIO, and each 

vector is assigned a handler (pthread in this case) on the host, along with an eventfd for notification. 

When an IRQ is being triggered, the eventfd wakes up the handler, which will notify the HPUX guest 

with the corresponding IRQ details that are already stored in the handler. 
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Fig.2 Describing interaction between various modules via DIO emulator on a Linux system 

 

The SR-IOV technology via VFIO delivers the best performance when implemented within multi-core 

processor environments. By avoiding the Rx side of the copy with DMA, this method results in better 

CPU utilization on virtualized servers. It can scale I/O to multiple VMs at the cost of less additional 

CPU overhead per VM, without sacrificing throughput. This is completely a user space solution without 

any kernel changes involved. 
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