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Delayed predicate algorithm evaluation in hybrid answer set programming (ASP) 

ABSTRACT 

A hybrid answer set programming (ASP) solver is a logic programming type solver with 

a variety of applications, e.g., diagnosing software failures, modeling dynamical systems, etc. A 

hybrid ASP solver finds solutions for hybrid ASP programs, which are sets of hybrid ASP rules. 

Hybrid ASP rules include stationary rules with associated predicate algorithms and advancing 

rules with associated advancing algorithms. Solutions to hybrid ASP programs are found 

iteratively by starting with an initial state and producing consequent states. Part of computing a 

consequent state involves determination of the stationary rules that are applicable at the 

consequent state. This in turn involves evaluating predicate algorithms associated with the rules. 

This approach is inefficient, since it requires that all the predicate algorithms be evaluated in all 

the states. 

The techniques of this disclosure avoid the inefficiency of evaluating predicate 

algorithms by adding auxiliary rules that enable intelligent guesses as to whether an algorithm 

will accept or reject, in turn enabling the continued evaluation of the rules without the evaluation 

of the algorithms. 
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BACKGROUND 

A hybrid answer set programming (ASP) solver [1] is a logic programming type solver 

with a variety of applications, e.g., diagnosing software failures, modeling dynamical systems, 

etc. A hybrid ASP solver finds solutions for hybrid ASP programs, which are sets of hybrid ASP 

rules. Hybrid ASP rules include stationary rules with associated predicate algorithms and 

advancing rules with associated advancing algorithms. For example, hybrid ASP rules are of the 

form: 

a :- B[1];...; B[k] : P, where 

for i = 1 to k, B[i] is a block, a is a predicate atom, and P is a predicate algorithm. A block 

B[i] is of the form b[1],..., b[m], not b[m+1],..., not b[m+n], where for i 

from 1 to m+n, b[i] is a predicate atom. 

Solutions to hybrid ASP programs are found iteratively by starting with an initial state 

and producing consequent states. Part of computing a consequent state involves determining 

which stationary rules are applicable at the consequent state. This in turn involves evaluating 

predicate algorithms associated with the rules. This approach is inefficient, since it requires that 

all the predicate algorithms be evaluated in all the states. 
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DESCRIPTION 

Fig. 1: Delayed predicate algorithm evaluation in hybrid ASP 

As illustrated in Fig. 1, the techniques of this disclosure avoid the inefficiency of 

evaluating all the predicate algorithms in every state as follows. For every stationary rule with a 

predicate algorithm with name “name,” form the following auxiliary rules (102):  

● add an auxiliary rule with the same prerequisite as the original rule, and with conclusion 

auxiliary atom  _relevant_(name) stating that the algorithm is relevant;  

● add a rule with the prerequisite being _relevant_(name), not _accepting_(name), 

and conclusion being _rejecting_(name); 
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● add a rule with the prerequisite being _relevant_(name), not _rejecting_(name), 

and conclusion being _accepting_(name); and 

● add another rule with the conclusion of the original stationary rule, the body of the 

original rule, and an additional prerequisite _relevant_(name) added to the last 

block. 

The aforementioned addition of rules enables the recording of a guess as to whether the 

algorithm returns true or false, e.g., accepts or rejects (104). The rules can thereby continue being 

evaluated (106) without evaluation of the algorithm. Once the consequent states are computed, 

only the algorithms marked as relevant are evaluated (108), and the results of the evaluation are 

compared with the recorded guesses (110). States where the actual results and guesses match are 

considered valid. States where the actual results and guesses don't match are considered invalid 

(112). 

After validating the correct guesses, the auxiliary atoms generated by the auxiliary rules 

(e.g., _relevant_(name), _accepting_(name), _rejecting_(name)) are removed to 

recover the correct state (116).

Example 

Consider a hybrid ASP program comprising a single stationary rule: 

(R) a :- b, c : PA, 

where a, b, c are predicate atoms and PA is a predicate algorithm. 

Per the techniques of this disclosure, the following rules replace rule R: 

(A1) _relevant_(PA) :- b, c 

(A1) _accepting_(PA) :- _relevant_(PA), not _rejecting_(PA) 

(A3) _rejecting_(PA) :- _relevant_(PA), not _accepting_(PA) 

5

Defensive Publications Series, Art. 1853 [2019]

https://www.tdcommons.org/dpubs_series/1853



(A4) a :- b, c, _accepting_(PA) 

Consider now a state ({b, c}, q), where q is a set of parameter values. 

If PA(q) is TRUE, then the state should be ({a, b, c}, q).

If PA(q) is FALSE, then the state should remain ({b, c}, q). 

Considering rules A1-A4, there are two candidate states: 

({b, c, _relevant_(PA), _accepting_(PA), a}, q) and  

({b, c, _relevant_(PA), _rejecting_(PA)), q). 

Note that the states include _relevant_(PA); this indicates that PA should be evaluated and 

the result be validated by the guess made in the state. 

If PA(q) is TRUE, then the _accepting_(PA) guess is correct and

_rejecting_(PA) guess is incorrect. Thus, the first state ({b, c, _relevant_(PA), 

_accepting_(PA), a}, q) is valid and the second state ({b, c, _relevant_(PA), 

_rejecting_(PA)), q) is invalid. The auxiliary atoms are removed to get the following 

valid state ({a, b, c}, q). 

If PA(q) is FALSE, then the _rejecting_(PA) guess is correct and the 

_accepting_(PA) guess is incorrect. Thus, the second state ({b, c, _relevant_(PA), 

_rejecting_(PA)), q) is valid and the first state is invalid. The auxiliary atoms are removed 

to get the following valid state ({b, c}, q). 

This example illustrates that if the state satisfies the prerequisites {b, c} of the rule

(R) then the predicate algorithm PA experiences delayed evaluation, and the correct state is the 

identified. On the other hand, if the state does not satisfy the prerequisites of the rule (R), e.g., 

the state is ({b}, q), then (R) is not applicable, and the resultant state is ({b}, q). 
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Nevertheless, since the prerequisites of (A1) are not satisfied, _relevant_(PA) is not 

derived. Consequently, PA is not evaluated, thus resulting in increased efficiency. 

For the general stationary rule of the form:  

a :- B[1]; ...; B[k] : P 

the translation looks, similar to rules A1-A4, as follows: 

(A’1) _relevant_(PA) :- B[1]; ...; B[k] 

(A’1) _accepting_(PA) :- _relevant_(PA), not _rejecting_(PA) 

(A’3) _rejecting_(PA) :- _relevant_(PA), not _accepting_(PA) 

(A’4) a :- B[1]; ...; B[k] + _accepting_(PA)

where B[k]+_accepting_(PA) stands for a block obtained by appending an atom 

_accepting_(PA) to B[k].

For example, if B[k] is  

b[1], ..., b[m], not b[m+1], ..., not b[m+n], 

then B[k]+_accepting_(PA) is  

b[1], ..., b[m], _accepting_(PA), not b[m+1], ..., not b[m+n]. 

CONCLUSION 

The techniques of this disclosure avoid the inefficiency of evaluating predicate 

algorithms in hybrid answer set programming by adding auxiliary rules that enable intelligent 

guesses as to whether an algorithm will accept or reject, in turn enabling the continued 

evaluation of the rules without the evaluation of the algorithms. 
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