
Technical Disclosure Commons

Defensive Publications Series

January 07, 2019

Delayed predicate algorithm evaluation in hybrid
answer set programming (ASP)
Alex Brik

Jori Bomanson

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Brik, Alex and Bomanson, Jori, "Delayed predicate algorithm evaluation in hybrid answer set programming (ASP)", Technical
Disclosure Commons, (January 07, 2019)
https://www.tdcommons.org/dpubs_series/1853

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/234668249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F1853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/1853?utm_source=www.tdcommons.org%2Fdpubs_series%2F1853&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Delayed predicate algorithm evaluation in hybrid answer set programming (ASP)

ABSTRACT

A hybrid answer set programming (ASP) solver is a logic programming type solver with

a variety of applications, e.g., diagnosing software failures, modeling dynamical systems, etc. A

hybrid ASP solver finds solutions for hybrid ASP programs, which are sets of hybrid ASP rules.

Hybrid ASP rules include stationary rules with associated predicate algorithms and advancing

rules with associated advancing algorithms. Solutions to hybrid ASP programs are found

iteratively by starting with an initial state and producing consequent states. Part of computing a

consequent state involves determination of the stationary rules that are applicable at the

consequent state. This in turn involves evaluating predicate algorithms associated with the rules.

This approach is inefficient, since it requires that all the predicate algorithms be evaluated in all

the states.

The techniques of this disclosure avoid the inefficiency of evaluating predicate

algorithms by adding auxiliary rules that enable intelligent guesses as to whether an algorithm

will accept or reject, in turn enabling the continued evaluation of the rules without the evaluation

of the algorithms.

KEYWORDS

● answer set programming (ASP)

● logic programming

● declarative programming

● predicate algorithms

● failure diagnosis

2

Brik and Bomanson: Delayed predicate algorithm evaluation in hybrid answer set progr

Published by Technical Disclosure Commons, 2019

BACKGROUND

A hybrid answer set programming (ASP) solver [1] is a logic programming type solver

with a variety of applications, e.g., diagnosing software failures, modeling dynamical systems,

etc. A hybrid ASP solver finds solutions for hybrid ASP programs, which are sets of hybrid ASP

rules. Hybrid ASP rules include stationary rules with associated predicate algorithms and

advancing rules with associated advancing algorithms. For example, hybrid ASP rules are of the

form:

a :- B[1];...; B[k] : P, where

for i = 1 to k, B[i] is a block, a is a predicate atom, and P is a predicate algorithm. A block

B[i] is of the form b[1],..., b[m], not b[m+1],..., not b[m+n], where for i

from 1 to m+n, b[i] is a predicate atom.

Solutions to hybrid ASP programs are found iteratively by starting with an initial state

and producing consequent states. Part of computing a consequent state involves determining

which stationary rules are applicable at the consequent state. This in turn involves evaluating

predicate algorithms associated with the rules. This approach is inefficient, since it requires that

all the predicate algorithms be evaluated in all the states.

3

Defensive Publications Series, Art. 1853 [2019]

https://www.tdcommons.org/dpubs_series/1853

DESCRIPTION

Fig. 1: Delayed predicate algorithm evaluation in hybrid ASP

As illustrated in Fig. 1, the techniques of this disclosure avoid the inefficiency of

evaluating all the predicate algorithms in every state as follows. For every stationary rule with a

predicate algorithm with name “name,” form the following auxiliary rules (102):

● add an auxiliary rule with the same prerequisite as the original rule, and with conclusion

auxiliary atom _relevant_(name) stating that the algorithm is relevant;

● add a rule with the prerequisite being _relevant_(name), not _accepting_(name),

and conclusion being _rejecting_(name);

4

Brik and Bomanson: Delayed predicate algorithm evaluation in hybrid answer set progr

Published by Technical Disclosure Commons, 2019

● add a rule with the prerequisite being _relevant_(name), not _rejecting_(name),

and conclusion being _accepting_(name); and

● add another rule with the conclusion of the original stationary rule, the body of the

original rule, and an additional prerequisite _relevant_(name) added to the last

block.

The aforementioned addition of rules enables the recording of a guess as to whether the

algorithm returns true or false, e.g., accepts or rejects (104). The rules can thereby continue being

evaluated (106) without evaluation of the algorithm. Once the consequent states are computed,

only the algorithms marked as relevant are evaluated (108), and the results of the evaluation are

compared with the recorded guesses (110). States where the actual results and guesses match are

considered valid. States where the actual results and guesses don't match are considered invalid

(112).

After validating the correct guesses, the auxiliary atoms generated by the auxiliary rules

(e.g., _relevant_(name), _accepting_(name), _rejecting_(name)) are removed to

recover the correct state (116).

Example

Consider a hybrid ASP program comprising a single stationary rule:

(R) a :- b, c : PA,

where a, b, c are predicate atoms and PA is a predicate algorithm.

Per the techniques of this disclosure, the following rules replace rule R:

(A1) _relevant_(PA) :- b, c

(A1) _accepting_(PA) :- _relevant_(PA), not _rejecting_(PA)

(A3) _rejecting_(PA) :- _relevant_(PA), not _accepting_(PA)

5

Defensive Publications Series, Art. 1853 [2019]

https://www.tdcommons.org/dpubs_series/1853

(A4) a :- b, c, _accepting_(PA)

Consider now a state ({b, c}, q), where q is a set of parameter values.

If PA(q) is TRUE, then the state should be ({a, b, c}, q).

If PA(q) is FALSE, then the state should remain ({b, c}, q).

Considering rules A1-A4, there are two candidate states:

({b, c, _relevant_(PA), _accepting_(PA), a}, q) and

({b, c, _relevant_(PA), _rejecting_(PA)), q).

Note that the states include _relevant_(PA); this indicates that PA should be evaluated and

the result be validated by the guess made in the state.

If PA(q) is TRUE, then the _accepting_(PA) guess is correct and

rejecting(PA) guess is incorrect. Thus, the first state ({b, c, _relevant_(PA),

accepting(PA), a}, q) is valid and the second state ({b, c, _relevant_(PA),

rejecting(PA)), q) is invalid. The auxiliary atoms are removed to get the following

valid state ({a, b, c}, q).

If PA(q) is FALSE, then the _rejecting_(PA) guess is correct and the

accepting(PA) guess is incorrect. Thus, the second state ({b, c, _relevant_(PA),

rejecting(PA)), q) is valid and the first state is invalid. The auxiliary atoms are removed

to get the following valid state ({b, c}, q).

This example illustrates that if the state satisfies the prerequisites {b, c} of the rule

(R) then the predicate algorithm PA experiences delayed evaluation, and the correct state is the

identified. On the other hand, if the state does not satisfy the prerequisites of the rule (R), e.g.,

the state is ({b}, q), then (R) is not applicable, and the resultant state is ({b}, q).

6

Brik and Bomanson: Delayed predicate algorithm evaluation in hybrid answer set progr

Published by Technical Disclosure Commons, 2019

Nevertheless, since the prerequisites of (A1) are not satisfied, _relevant_(PA) is not

derived. Consequently, PA is not evaluated, thus resulting in increased efficiency.

For the general stationary rule of the form:

a :- B[1]; ...; B[k] : P

the translation looks, similar to rules A1-A4, as follows:

(A’1) _relevant_(PA) :- B[1]; ...; B[k]

(A’1) _accepting_(PA) :- _relevant_(PA), not _rejecting_(PA)

(A’3) _rejecting_(PA) :- _relevant_(PA), not _accepting_(PA)

(A’4) a :- B[1]; ...; B[k] + _accepting_(PA)

where B[k]+_accepting_(PA) stands for a block obtained by appending an atom

accepting(PA) to B[k].

For example, if B[k] is

b[1], ..., b[m], not b[m+1], ..., not b[m+n],

then B[k]+_accepting_(PA) is

b[1], ..., b[m], _accepting_(PA), not b[m+1], ..., not b[m+n].

CONCLUSION

The techniques of this disclosure avoid the inefficiency of evaluating predicate

algorithms in hybrid answer set programming by adding auxiliary rules that enable intelligent

guesses as to whether an algorithm will accept or reject, in turn enabling the continued

evaluation of the rules without the evaluation of the algorithms.

7

Defensive Publications Series, Art. 1853 [2019]

https://www.tdcommons.org/dpubs_series/1853

REFERENCES

[1] Brik, Alex, and Jeffrey B. Remmel. "Hybrid ASP." In LIPIcs-Leibniz International

Proceedings in Informatics, vol. 11. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2011.

Available online at http://drops.dagstuhl.de/opus/volltexte/2011/3179/pdf/22.pdf

8

Brik and Bomanson: Delayed predicate algorithm evaluation in hybrid answer set progr

Published by Technical Disclosure Commons, 2019

	Technical Disclosure Commons
	January 07, 2019

	Delayed predicate algorithm evaluation in hybrid answer set programming (ASP)
	Alex Brik
	Jori Bomanson
	Recommended Citation

	

