
Technical Disclosure Commons

Defensive Publications Series

January 03, 2019

FIRMWARE COMPRESSION MECHANISM
FOR SPEEDING UP FIRMWARE UPDATING
IN A RESOURCE RESTRICTED NETWORK
Yinfang Wang

Chuanwei Li

Feiliang Wang

Yajun Xia

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Wang, Yinfang; Li, Chuanwei; Wang, Feiliang; and Xia, Yajun, "FIRMWARE COMPRESSION MECHANISM FOR SPEEDING UP
FIRMWARE UPDATING IN A RESOURCE RESTRICTED NETWORK", Technical Disclosure Commons, ( January 03, 2019)
https://www.tdcommons.org/dpubs_series/1852

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/234668247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F1852&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1852&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1852&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/1852?utm_source=www.tdcommons.org%2Fdpubs_series%2F1852&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US


 1 5779 

FIRMWARE COMPRESSION MECHANISM FOR SPEEDING UP FIRMWARE 
UPDATING IN A RESOURCE RESTRICTED NETWORK 

 
AUTHORS:   

Yinfang Wang 
Chuanwei Li 

Feiliang Wang 
Yajun Xia 

 
ABSTRACT 

Techniques are described herein for adopting a substring list creation and extraction 

mechanism as well as a variable-length patch mechanism to generate an Over-The-Air 

(OTA) image path file having a small size. This saves network resources and reduces side 

effects on data transmission / network service when executing image / firmware upgrading. 

As a result, OTA updating can be sped up, and the peak network traffic during the firmware 

updating may be narrowed. 

 

DETAILED DESCRIPTION 

Field Area Network (FAN) solutions are being developed for smart utility 

applications, such as Advanced Metering Infrastructure (AMI) and Distribution 

Automation (DA). A Network Management System (NMS) manages and operates 

thousands of nodes in multiple Personal Area Networks (PANs). The firmware updating 

also is controlled by the NMS. Existing solutions for firmware updating in a mesh network 

use a simple mechanism for transmitting the entire image from the NMS. 

Typically, the entire updating image size can be 100KB or more on different 

platforms. Moreover, the wireless environment is strongly affected by environmental 

conditions that change over time (e.g., temporal changes in interference, physical 

obstruction, propagation characteristics of the physical media, etc.). That causes missing 

packets. Existing solutions for firmware upgrades in mesh networks use the simple 

mechanism of re-transmitting all the packets from the NMS in several rounds in case of 

missing packets. As a result, the entire upgrade process usually takes days or weeks in a 

mesh network with thousands of nodes. But users require the firmware updates to complete 

quickly and have minimal side effects on daily business. 

2

Wang et al.: FIRMWARE COMPRESSION MECHANISM FOR SPEEDING UP FIRMWARE UPDATING

Published by Technical Disclosure Commons, 2019



 2 5779 

One solution is to provide a fixed-length (e.g., 20KB) firmware difference (diff) 

compression patches to reduce the transfer size during firmware updating. However, the 

existing mechanism has significant defects, particularly when code addition or deletion on 

the image occurs. 

Figure 1 below illustrates an example of code addition. As shown, there is an old 

image with 100KB. The new image for updating is 110KB, with the image increment of 

10KB shown in red. The image is divided into blocks each with a fixed size of 20KB. Using 

the existing method, the final image diff is shown in blue. Here, the image patch size is up 

to 90 KB. Compared to the origin size of 110 KB, the optimization effect is not obvious. 

 
Figure 1: Fixed-length split mechanism 

Techniques described herein provide a better mechanism for generating the 

transferred image patch size in order to save mesh network resources. 

To resolve the current defects in firmware updating, a flexible mechanism is 

provided to compress the transferred image size Over-The-Air (OTA) in a resource 

restricted network. An example firmware updating process is provided in four steps. 

The first step involves substring creation and extraction. In a mesh network, the 

NMS controls the firmware updating process. Before updating new firmware on nodes, the 

NMS first extracts the substring list between the updating image and the existing old image 

on flash. The substring list may be extracted by adopting existing algorithms such as a 

suffix array. In one example, it applies the binary diff program Bsdiff. Its enhanced 

3

Defensive Publications Series, Art. 1852 [2019]

https://www.tdcommons.org/dpubs_series/1852



 3 5779 

algorithms may be developed to minimize the additional memory usage including an 

optimal time and memory algorithm. Second, based on the extracted substring list, the 

updating image is divided into serval blocks for subsequent processing.  

Two cases are considered. The first case involves continuous and small split blocks 

(e.g., serval bytes on each block). This may lead to production of more patch headers such 

that the transferred bytes will increase. The Jaccard similarity coefficient algorithm may 

be used on the continuous and small split blocks to produce one suitable size block. The 

size may be decided by resources on the different platform. 

The second case involves a bigger split block. In one example, the size of each split 

block is more than the maximum Random Access Memory (RAM) on the nodes, and 

therefore the nodes cannot handle it. Considering the RAM limitations on the mesh node, 

the maximum transferred size may be adjusted on different platforms. When the split block 

is greater than the maximum transferred size, the existing split block may be divided again 

with the maximum transferred size. 

Figure 2 below illustrates an old image with substring list [A, B, ..., E] and new 

image with substring list [A, B, ..., E, F]. The common substring list is [A, B, ..., E]. Based 

on the common substring list, the image may be divided into serval parts. 

 
Figure 2: Substring List Creation and Extraction 

The second step involves a flexible and variable-length patch mechanism. Based 

on the aforementioned common key words list, the updating image is divided into several 

4

Wang et al.: FIRMWARE COMPRESSION MECHANISM FOR SPEEDING UP FIRMWARE UPDATING

Published by Technical Disclosure Commons, 2019



 4 5779 

blocks. The diff of each block between the updating image and the existing old image may 

be obtained, and the variable-length patches generated. Each patched block contains the 

patch header and diff contexts so that the endpoint can rebuild the upgrading image based 

on the patch. The patch header includes the old block address, old block size, new block 

address offset, and new block size. The diff context may be the differences of each block 

between the old and new images. 

Figure 3 below illustrates example code addition on the image. As shown, there is 

an old image of 100KB. The updating image is 110KB with a code insertion size of 10KB 

as shown in red. The substring list is [A, B, C, D, E] between the old image and the updating 

image. The patched image may thereby be obtained. Here, only 10KB of diff context (blue) 

is generated. Comparing the entire image transferring, the OTA image size can be reduced 

by 91%. Compared to prior techniques with a patch size of 90KB, the OTA image size can 

be reduced by 88%. 

 
Figure 3: Variable-length split mechanism 

Comparing with previous solutions, the techniques presented herein enable smaller-

sized patch files to be generated when there is code addition/deletion on an image.  

In the third step, the NMS combines all diffs into one patch file, and transfers the 

patch file to the mesh nodes. But considering the RAM limitations on the mesh nodes, the 

maximum transferred size may be adjusted. 

5

Defensive Publications Series, Art. 1852 [2019]

https://www.tdcommons.org/dpubs_series/1852



 5 5779 

In the fourth step, once the nodes receive the joint patch file, the mesh nodes 

decompress the file into pieces, and then patch each to an old image. Finally the nodes 

generate the new image. 

In case of a first time firmware upgrading on the mesh node, there may be no image 

on the flash slot which needs to be updated. As such, the running or backup image slot may 

be configured as the old image. 

In summary, techniques are described herein for adopting a substring list creation 

and extraction mechanism as well as a variable-length patch mechanism to generate an 

OTA image path file having a small size. This saves network resources and reduces side 

effects on data transmission / network service when executing image / firmware upgrading. 

As a result, OTA updating can be sped up, and the peak network traffic during the firmware 

updating may be narrowed. 

6

Wang et al.: FIRMWARE COMPRESSION MECHANISM FOR SPEEDING UP FIRMWARE UPDATING

Published by Technical Disclosure Commons, 2019


	Technical Disclosure Commons
	January 03, 2019

	FIRMWARE COMPRESSION MECHANISM FOR SPEEDING UP FIRMWARE UPDATING IN A RESOURCE RESTRICTED NETWORK
	Yinfang Wang
	Chuanwei Li
	Feiliang Wang
	Yajun Xia
	Recommended Citation


	Microsoft Word - 904342_1

