
Technical Disclosure Commons

Defensive Publications Series

December 21, 2018

ADVERTISING SOFTWARE/SECURITY
USAGE DESCRIPTIONS WITH POLICY
RESPONSE
Eliot Lear

Brian Weis

Chris Steck

Nancy Cam-Winget

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Lear, Eliot; Weis, Brian; Steck, Chris; and Cam-Winget, Nancy, "ADVERTISING SOFTWARE/SECURITY USAGE
DESCRIPTIONS WITH POLICY RESPONSE", Technical Disclosure Commons, (December 21, 2018)
https://www.tdcommons.org/dpubs_series/1815

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/234668173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F1815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/1815?utm_source=www.tdcommons.org%2Fdpubs_series%2F1815&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 5777

ADVERTISING SOFTWARE/SECURITY USAGE DESCRIPTIONS WITH POLICY
RESPONSE

AUTHORS:
Eliot Lear
Brian Weis
Chris Steck

Nancy Cam-Winget

ABSTRACT

Techniques are provided for an organization-maintained server which takes three

inputs: (1) a set of Uniform Resource Identifiers (URIs) from Internet of Things (IoT)

devices, each of which point to a manifest; (2) a set of manifests resolved from the URIs;

and (3) a set of threat feeds. The server periodically compares the vulnerabilities in the

threat feeds to the manifests. When a vulnerability is found, steps are taken to protect the

rest of the network from the vulnerable devices until they can be remediated.

DETAILED DESCRIPTION

Vulnerabilities in software are typically associated with a software package (e.g.,

OpenSSL) and the version of that package. It is important for enterprise administrators to

know which packages are installed on which devices for purposes of remediating risk tied

to those vulnerabilities. Given a particular version, an action or response may be required

when a vulnerability is discovered.

Methods exist for maintaining software manifests for complex network devices,

such as Personal Computers (PCs). But no such method has been defined for Internet of

Things (IoT) devices, where the focus has been on reporting a level of firmware running

on those devices. The reality is that many IoT devices will have third-party software

packages included as part of their firmware or software. Some IoT devices are based on a

minimal Linux implementation that includes a number of open source packages.

While complex network devices such as PCs may have the resources available to

store and/or maintain a manifest, the IoT device probably does not. Likewise, even though

PCs report to a posture assessment server what it contains, an IoT device probably does

not have that ability. So traditional software inventory management and posture assessment

methods are not generally applicable to IoT devices.

2

Lear et al.: ADVERTISING SOFTWARE/SECURITY USAGE DESCRIPTIONS WITH POLICY RESP

Published by Technical Disclosure Commons, 2018

 2 5777

An IoT device generally will not have the capability of responding to a posture

assessment server. Still, it is valuable for software inventory management and posture

assessment servers to be able to understand what source packages are used on it in order to

determine if an IoT device is at risk.

Additionally, there may be some security-related attributes about the device that

would be valuable for a network administrator to know (e.g., expected security strength

and capabilities of the IoT device such that finer access controls can be enabled on them).

It is envisioned that end users will not have the ability to install random software

on IoT devices, and that in general they will treat whatever software is installed as a single

monolithic system. The entity with the best knowledge of the installed software is the

manufacturer. The manufacturer would create and make available a manifest that describes

the version of the current software running on the IoT device, but more importantly lists

the software packages and their versions that would be used. It would also list other security

related information such as what kinds of security measures are provided (e.g., does it have

a Trusted Platform Module (TPM) / Trusted Execution Environment (TEE), does it have

secure boot, etc.).

Figure 1 below illustrates a method that can be used by the owner of a device to

mitigate known software vulnerabilities in an IoT device. The server managing manifests

may be a posture assessment server, or software inventory management or other server that

is monitoring a network and implementing a policy.

Figure 1

3

Defensive Publications Series, Art. 1815 [2018]

https://www.tdcommons.org/dpubs_series/1815

 3 5777

At 1, the device manufacturer advertises a capability (e.g., in the form of a Uniform

Resource Identifiers (URI)) to an interface to retrieve a manifest. The location of the

manifest could be included as a data element in a Manufacturer Usage Description (MUD)

file. The URI could point to a static file on a server, or it could refer to an Open Mobile

Alliance (OMA) Lightweight Machine-to-Machine (LwM2M) Server or Security

Automation and Continuous Monitoring (SACM) protocol. A device manufacturer that

wishes to restrict the information could require authorization of the posture assessment

server based on configuration information received via a certificate extension that identifies

a certificate for these purposes. The URI could even point to an interface available on the

device itself which would return the information (e.g., the Common Industrial Protocol

(CIP) getIdentity() message).

At 2, a device owner receives knowledge of an IoT device manifest (e.g., by

observing it in a MUD file to which an IoT device has advertised). It fetches the manifest,

verifies that the manufacturer signed it, and stores it in its posture assessment server.

At 3, the posture assessment server receives feeds that indicate new vulnerabilities

in various open software packages (e.g., from the National Vulnerability Database at

https://nvd.nist.gov/vuln/data-feeds). In an alternate manifestation, a MUD extension

might point to one or more vendor feeds of the same information via Managed Incident

Lightweight Exchange (MILE) or some other protocol.

At 4, the posture assessment server compares the IoT device manifest that it has

fetched to the information in the known vulnerability feeds, and determines a policy based

on the criticality of the device, the number of impacted devices, the age of the vulnerability,

and the criticality of the vulnerability severity scores.

At 5, the posture assessment server implements the policy. This may be anything

from ignoring the problem to shutting a system down to waking someone up (e.g., via

ServiceNow support queues). In some cases, such as devices that cannot be upgraded, the

remediation taken may become a permanent policy to provide additional monitoring or

security to compensate for the package vulnerability.

The manifest should be tied to a particular version of firmware that the

manufacturer releases for the device, or else include a cache validity field as part of the

4

Lear et al.: ADVERTISING SOFTWARE/SECURITY USAGE DESCRIPTIONS WITH POLICY RESP

Published by Technical Disclosure Commons, 2018

 4 5777

manifest to alert the posture assessment server to periodically re-validate the contents of

the manifest.

The use of a URI allows for the manifest to be fetched in a number of ways. In one

example, it could be a Uniform Resource Locator (URL) to a manufacture-provided server.

In another example, it could be "posture.sacm:" where the local controller knows how to

get to the local SACM server (Software Inventory Message and Attributes Posture

Collector (SWIMA-PV)) to ask it for a manifest received from the device through the

Network Access Control (NAC) / SACM protocol. In yet another example, it could be

"posture.cip" that refers to the device itself, where the posture server or MUD manager

would understand that the CIP protocol can be used to obtain a manifest from the device

itself.

The device manufacturer may advertise a URI by which a network device can

retrieve a manifest. Automatic vulnerability analysis of a new IoT device on the network

may be performed by a posture assessment server. The analysis is based on the manifest of

software packages and security attributes that the device manufacturer makes available in

one of several ways. When a concern is found, a network administrator can immediately

put remediations into effect. Automatic identification of vendor vulnerability information

is also possible (when the vendor wants to offer it).

IoT is the typical case where the manufacturer is able to provide reliable

information about the software and security attributes of a device. For IoT devices, the

software is relatively static and is generally sourced from the manufacturer. However, the

solution described herein may also apply to other limited function devices such as network

switches and routers (including ruggedized routers used for IoT) that have a limited set of

software packages.

The manifest advertisement may be trusted (e.g., not provided by an attacker) based

on two levels of protection. For the first level, the advertisement is expected to be a URI

included in a MUD file, signed by the manufacturer. The second level depends on the URI

itself. If the URI is "https:" (i.e., as a web page), then the manifest itself is expected to be

signed by the manufacturer. If the URI describes a local controller or the device itself (e.g.,

"posture.sacm" or "posture.cip") then the posture protocol itself would include an integrity

method for its data.

5

Defensive Publications Series, Art. 1815 [2018]

https://www.tdcommons.org/dpubs_series/1815

 5 5777

A URI that could point to one of many useful methods of describing information

about the device may be embedded. The URI approach allows for a wider variety of

information to the considered, and for a wider variety of methods by which device

information may be obtained. Furthermore, the process described herein is intended to be

an iterative posture assessment process used over the lifetime of the device, which reacts

to newly announced vulnerabilities. This is a significant improvement to statically

examining a list of network services available on the device.

In summary, techniques are provided for an organization-maintained server which

takes three inputs: (1) a set of URIs from IoT devices, each of which point to a manifest;

(2) a set of manifests resolved from the URIs; and (3) a set of threat feeds. The server

periodically compares the vulnerabilities in the threat feeds to the manifests. When a

vulnerability is found, steps are taken to protect the rest of the network from the vulnerable

devices until they can be remediated.

6

Lear et al.: ADVERTISING SOFTWARE/SECURITY USAGE DESCRIPTIONS WITH POLICY RESP

Published by Technical Disclosure Commons, 2018

	Technical Disclosure Commons
	December 21, 2018

	ADVERTISING SOFTWARE/SECURITY USAGE DESCRIPTIONS WITH POLICY RESPONSE
	Eliot Lear
	Brian Weis
	Chris Steck
	Nancy Cam-Winget
	Recommended Citation

	Microsoft Word - 899187_1

