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ABSTRACT 

Techniques are described herein for securing data used for a machine learning 

algorithm. The frequency or top-k values calculated over time of the respective network 

traffic feature data sets are used instead of the actual data or a set thereof (this can also be 

extended to any other data sets). Here, the frequency represents the actual data and thereby 

obfuscates potential sensitive information that should not be used within an oftentimes 

shared cloud machine learning application.  

 

DETAILED DESCRIPTION 

Sensitive traffic is often shared over networks, sometimes containing Personally 

Identifying Information (PII). This is a problem that has gotten significant air-time over 

the past few years after several malicious usages and attacks making use of such PII. 

Described herein is an approach to introduce obfuscation techniques whereby sensitive 

data is anonymized during pattern recognition in data transmitted via the network. 

With the introduction of privacy laws such as General Data Protection Regulation 

(GDPR), more and more security questions arise as to how best to manage and protect 

individuals’ data. This concern is also valid for data in transit on the network. To assure 

transparency when applying machine learning approaches, a top-k-based method is 

provided to hide network-specific information and mask them behind top-k values. These 

top-k rankings may be derived using probabilistic algorithms based on memory-efficient 

data structures such as the Count-Min Sketch. 

The top-k value is introduced as a way to provide anonymity within a machine 

learning environment. Instead of feeding the actual clear-text data to the machine learning 

engine, top-k values are calculated on traffic feature sets. These feature sets may be defined 

up-front by the administrator and describe flows in the network. The more accurate and the 

more traffic feature sets are defined, the more input the top-k calculation receives. The top-

2

Rantzau et al.: OBFUSCATION AND ANONYMIZATION TECHNIQUES FOR NETWORK DATA SETS FO

Published by Technical Disclosure Commons, 2018



 2 5740 

k values are calculated frequently (also adjustable) and generate a data structure over time 

that allows machine learning algorithms to detect certain patterns.  

In one example, a traffic feature set consisting of the source Internet Protocol (IP) 

address and the destination IP address has different top-k values over time. Between peak 

hours this particular stream ranks high in the top-k list, while during other times it does not. 

Machine learning can be used over time to discover these kind of patterns on an 

anonymized value. The machine learning engine is then able to detect anomalies in case a 

certain top-k value pair is acting out.  

Example traffic feature sets that characterize a data flow may include the following: 

 (SRC-IP || DEST-IP) 

 (SRC-IP || SRC-PORT || DEST-IP || DEST-PORT || PROTO) 

 

The top-k values are calculated over time for every packet received, based on 

different traffic feature sets. Over time, the top-k values for these traffic feature sets 

generate a unique and specific pattern (i.e., frequency) for packets and flows without 

relying on actual information transmitted on the network. 

Machine learning may now be applied over time to analyze behaviors in top-k 

rankings to analyze whether packets with the traffic flow sets for the top-k values have 

changed and, if so, how. This approach is able to detect certain behavioral characteristics, 

such as an anomaly increase over time for a specific top-k (traffic feature set). This 

information can be used to detect patterns in traffic flows without actually analyzing the 

data sent across the network. 

Figure 1 below illustrates an example flow. 
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Figure 1 

In one use-case, a multi-cloud system hosts a large set of tenants where resources 

are shared. A security concern is present that data may be leaked between tenants. For 

machine learning applications within such an environment, it is important that the 

algorithm uses obfuscated data rather than the actual data to analyze and define patterns 

over time. To achieve this, a top-k interim step is used between the source data and the 

machine learning algorithm. The top-k calculation is used to obfuscate the data. Instead of 

directly accessing information captured for example on the network (e.g., IP addresses, 

sensitive data/patterns, etc.), traffic feature data sets are defined that are used as input for 

the top-k algorithm. The top-k values that are used as input parameters for the machine 

learning algorithm are received as an output. The top-k values are numerical values that 

change over time and define a pattern on the frequency of specific traffic feature data sets. 

The frequency of those is the obfuscated pattern over time with which a machine learning 

algorithm can calculate recommendations. 

The recommendation received over time is based on the frequency of the top-k 

values. These can be matched against hash values of the actual network traffic data sets. 
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Feedback through recommendation is performed through a reverse lookup specific within 

a tenant environment, thereby remaining anonymous in shared parts of the machine 

learning application.  

Instead of applying the machine learning algorithm directly to the data captured on 

the network, the data is run through a top-k algorithm first before applying the machine 

learning algorithm on the dynamically changing rankings. Over time the machine learning 

algorithm is able to detect a pattern regarding how the defined network traffic feature data 

sets change. This may provide insight into patterns/behaviors within the network without 

directly using the data. To further obfuscate information, the top-k algorithm can run using 

a hash from the network traffic feature data set. This means that the machine learning 

algorithm is using a hash as well as a dynamically changing ranking as its input parameters. 

Calculating the learnings over time results in an output that is specific to the hash. As a 

feedback loop, the machine learning algorithm returns the recommendations over time for 

a specific hash. This hash can be looked up within the security domain to obtain an 

understanding of the network traffic feature data set specific to a tenant, where obfuscation 

is no longer necessary. 

A network traffic feature data set may be defined for use as input values for the top-

k calculation. The top-k calculation may be used to generate frequency of these network 

traffic feature data sets. As a result, the frequency of the top-k calculation is used as input 

for the machine learning algorithm, obfuscating the actual data. 

In summary, techniques are described herein for securing data used for a machine 

learning algorithm. The frequency or top-k values calculated over time of the respective 

network traffic feature data sets are used instead of the actual data or a set thereof (this can 

also be extended to any other data sets). Here, the frequency represents the actual data and 

thereby obfuscates potential sensitive information that should not be used within an 

oftentimes shared cloud machine learning application. 
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