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Abstract 
 In this paper, Self-adaptive Differential Evolution Algorithm (SaDE) Hybridized with Biogeography-Based 
Algorithm (BBO) to solve reactive power problem. In this proposed algorithm Iteration-level hybridization is 
done, in which Self-adaptive Differential Evolution Algorithm and Biogeography-Based Algorithm (DEBA) is 
executed in sequence. Self-adaptive Differential Evolution Algorithm acts independently and then exchanges 
information from Biogeography-Based algorithm. The proposed DEBA has been tested in IEEE 30,118 bus test 
systems and simulation results show clearly the better performance of the proposed algorithm in reducing the 
real power loss. 
Keywords: Evolutionary computation, Self-Adaptive Differential Evolution Algorithm, Biogeography-Based 
optimization, optimal reactive power, Transmission loss. 
 
1. Introduction 

Optimal reactive power problem is to minimize the real power loss and bus voltage deviation by satisfying a 
set of physical and operational constraints enacted by apparatus limitations and security requirements. Numerous 
mathematical techniques like the gradient method [1-2], Newton method [3] and linear programming [4-7] have 
been adopted to solve the optimal reactive power dispatch problem. Both   the gradient and Newton methods has 
the complication in handling inequality constraints. The problem of voltage stability and collapse play a   key 
role in power system planning and operation [8].  Evolutionary algorithms such as genetic algorithm have been 
already proposed to solve the reactive power flow problem [9, 10].In [11], Genetic algorithm has been used to 
solve   optimal reactive power flow problem. In [12], Hybrid differential evolution algorithm is suggested to 
improve the voltage stability index. In [13] Biogeography Based algorithm is proposed to solve the reactive 
power dispatch problem. In [14], a fuzzy based method is used to solve the optimal reactive power scheduling 
method .In [15], an improved evolutionary programming is used to solve the optimal reactive power dispatch 
problem. In [16], the optimal reactive power flow problem is solved by integrating a genetic algorithm with a 
nonlinear interior point method. In [17], a pattern algorithm is used to solve ac-dc optimal reactive power flow 
model with the generator capability limits. In [18], proposes a two-step approach to evaluate Reactive power 
reserves with respect to operating constraints and voltage stability.  In [19], a programming based proposed 
approach used to solve the optimal reactive power dispatch problem. In [20], presents a probabilistic algorithm 
for optimal reactive power provision in hybrid electricity markets with uncertain loads. This paper proposes 
Hybridization of Self-adaptive Differential evolution algorithm (SaDE) with Biogeography-Based Algorithm to 
solve reactive power problem. Biogeography-Based Optimization (BBO) [21, 22], is a new global optimization 
algorithm based on the biogeography theory, which is the study of distribution of species. The proposed DEBA 
algorithm has been evaluated in standard IEEE 30,118 bus test systems.   The simulation results show   that our 
proposed approach outperforms all the entitled reported algorithms in minimization of real power loss. 
2. Objective Function 
2.1. Active power loss 

The objective of the reactive power dispatch is to minimize the active power loss in the transmission network, 
which can be described as follows: 

 
F = PL = ∑ g��∈	
� �V�� + V�� − 2V�V�cosθ���            (1)                         
or 
F = PL = ∑ P�� − P� = P������ + ∑ P�� − P�	�

��������∈	�            (2)           
 
Where gk : is the conductance of branch between nodes i and j, Nbr: is the total number of transmission lines 

in power systems. Pd: is the total active power demand, Pgi: is the generator active power of unit i, and Pgsalck: 
is the generator active power of slack bus. 
2.2. Voltage profile improvement 

For minimizing the voltage deviation in PQ buses, the objective function becomes: 
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F = PL + ω! 	× VD                                 (3) 
Where ωv: is a weighting factor of voltage deviation. 

 
VD is the voltage deviation given by: 
 
VD = ∑ |V� − 1|	'(

�)*                                  (4) 
2.3. Equality Constraint  

The equality constraint of the problem is represented by the power balance equation, where the total power 
generation must cover the total power demand and the power losses: 

 
P+ = P, + P-                                       (5) 
 
This equation is solved by running Newton Raphson load flow method, by calculating the active power of 

slack bus to determine active power loss. 
2.4. Inequality Constraints  

The inequality constraints reflect the limits on components in the power system as well as the limits created to 
ensure system security. Upper and lower bounds on the active power of slack bus, and reactive power of 
generators: 

 
P������.�/ ≤ P������ ≤ P������.�1                  (6) 
 
Q��.�/ ≤ Q�� ≤ Q��.�1	, i ∈ N�               (7) 
 
Upper and lower bounds on the bus voltage magnitudes:          
 
V�.�/ ≤ V� ≤ V�.�1	, i ∈ N                   (8) 
 
Upper and lower bounds on the transformers tap ratios: 
 
T�.�/ ≤ T� ≤ T�.�1	, i ∈ N7                 (9) 
 
Upper and lower bounds on the compensators reactive powers: 
 
Q�.�/ ≤ Q� ≤ Q8.�1	, i ∈ N8               (10) 
 
Where N is the total number of buses, NT is the total number of Transformers; Nc is the total number of shunt 

reactive compensators. 
3. Self-adaptive differential evolution (SaDE) 

DE is a simple evolutionary algorithm that creates new candidate solutions by combining the parent solution 
and several other candidate solutions. A candidate solution replaces the parent solution if it has better fitness. 
This is a greedy selection scheme that often outperforms traditional evolutionary algorithms. SaDE is one of the 
best DE variants [23]. It uses a self-adaptive mechanism on control parameters F and CR. Each candidate 
solution in the population is extended with control parameters F and CR that are adjusted during evolution. 
Better values of these control parameters lead to better candidate solutions, which in turn are more likely to 
survive the selection process to produce the next solution and propagate the good parameter values. SaDE is 
highly independent of the optimization problem's characteristics and complexity, and it involves self-adaptation 
and learning by experience. SaDE demonstrates consistently good performance on a variety of problems, 
including both unimodal and multimodal problems. 
4. Biogeography-based optimization (BBO) 

BBO is a new population-based optimization algorithm inspired by the natural biogeography distribution of 
different species. In BBO,[21,22] each individual is considered as a “habitat” with a habitat suitability index 
(HIS). A good solution is analogous to an island with a high HSI, and a poor solution indicates an island with a 
low HSI. High HSI solutions tend to share their features with low HSI solutions. Low HSI solutions accept a lot 
of new features from high HSI solutions. In BBO, each individual has its own immigration rate λ and emigration 
rate μ. A good solution has higher μ and lower λ and vice versa. The immigrant ion rate and the emigration rate 
are functions of the number of species in the habitat. They can be calculated as follows, 
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λ� = I ;1 − �
/<                                          (11) 

 

		μ� = E;�/<                                              (12) 

 
Where I is the maximum possible immigration rate; E is the maximum possible emigration rate; k is the 

number of species of the k-th individual; and n is the maximum number of species. In BBO, there are two main 

operators, the migration and the mutation. 
4.1. Migration 
 Consider a population of candidate which is represented by design variable. Each design variable for particular 
population member is considered as SIV for that population member. Each population member is considered as 
individual habitat/Island. The objective function value indicates the HSI for the particular population member. S 
value represented by the solution depends on its HSI. S1 and S2 represent two solutions with different HSI. The 
emigration and immigration rates of each solution are used to probabilistically share information between 
habitats. If a given solution is selected to be modified, then its immigration rate λ is used to probabilistically 
modify each suitability index variable (SIV) in that solution. If a given SIV in a given solution Si is selected to 
be modified, then its emigration rates μ of the other solutions is used to probabilistically decide which of the 
solutions should migrate randomly for selected SIV to solution Si. The above phenomenon is known as 
migration in BBO. Because of this migration phenomenon BBO is well suited for the discrete optimization 
problems as it deals with the interchanging of design variables between the population members. 
4.2. Mutation 

 In nature a habitat’s HSI can change suddenly due to apparently random events (unusually large flotsam 
arriving from a neighboring habitat, disease, natural catastrophes, etc.). This phenomenon is termed as SIV 
mutation, and probabilities of species count are used to determine mutation rates. This probability mutates low 
HSI as well as high HSI solutions. Mutation of high HSI solutions gives them the chance to further improve. 
Mutation rate is obtained using following equation. 

M(s) = m.�1 ;1 − @A
@BCD

<       (13) 

Where, mmax is a user-defined parameter called mutation coefficient. 
5. Common Methodology  

 
Steps of iteration-level hybridization combining SaDE with BBO 

Step 1.     Generate the initial population P 
Step 2.     Maximum number of function evaluations reached? If Yes output result. If No go to step 3. 
Step 3.     Create offspring O from P using SaDE. 
Step 4.    Improve offspring O using BBO. 
Step 5.    Replace parent P with O. 
Step 6.    Output. 
 
Where P is the parent population and O is the offspring population. 
 
 
We implement iteration-level hybridization for optimal reactive power problem by combining recently 

developed SaDE with BBO.The goal of this hybridization approach is to balance the exploration and exploitation 
ability. 

 
Steps of DEBA algorithm  
 
1: Arbitrarily initialize the parent population P 
2: Calculate the fitness of all candidate solutions in P 
3: Whereas the halting criterion is not satisfied do 
4: Perform a recently developed SaDE to create offspring population O 
5: Calculate the fitness of each solution in offspring population O 
6: Compute the immigration rate λ and emigration rate μ of each solution 
7: Accomplish one generation of BBO to improve the solutions in offspring population O 
8: Swap the parent population P with the offspring population O 
9: End while 
 

One generation of an iteration-level hybridization of SaDE and BBO, where N is the population size. y and z 
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comprise the entire population of candidate solutions, yk is the kth candidate solution, and yk(a) is the ath 
decision variable of yk. CR and F are the probability of crossover and the scaling factor of SaDE respectively, 
and δ is a BBO control parameter between 0 and 1. 

 
1: z←y 
2: For each candidate solution z�Gk = 1	to	NJ do 
3: For each candidate solution decision variable index a do 
4: Pick three random solutions yr1, yr2 and yr3 mutually distinct from each other and from zk. 
5: Pick a random index n between 1 and N 
6: Use CR (probabilistic) or n (deterministic) to decide on recombination 
7: If recombination then 
8: z�GaJ ← y�*GaJ + F�y��GaJ − y�MGaJ�  
9: End if 
10: Update the control parameters F and CR using the SaDE adaptive mechanism 
11: End for 
12: Evaluate the fitness of each candidate solution zk in the population 
13: For each zk define emigration rate μk proportional to the fitness of zk, where μk	∈	A [0,1] 
14: For each candidate solution zk define immigration rate λ� = 1 − μ� 
15: For each candidate solution decision variable index a do 
16: Use λk to probabilistically decide whether to immigrate to zk 
17: If immigrating then 
18: Use {μ} to probabilistically select the emigrating solution yj 
19: z�GaJ ← δz�GaJ + G1 − δJy�GaJ 
20: End if 
21: End for 
22: End for 
23: y←z 

6. Simulation Results  
At first DEBA algorithm has been verified in IEEE 30-bus, 41 branch system. It has 6 generator-bus voltage 
magnitudes, 4 transformer-tap settings, and 2 bus shunt reactive compensators. Bus 1 is slack bus and 2, 5, 8, 11 
and 13 are taken as PV generator buses and the rest are PQ load buses. Control variables limits are listed in 
Table 1. 
Table 1: Preliminary Variable Limits (PU) 
 

 Variables 
 

Min. 
Value 

Max. 
Value 

Type 

Generator Bus 0.92 1.12 Continuous 
Load Bus 0.94 1.04 Continuous 

Transformer-Tap 0.94 1.04 Discrete 
Shunt Reactive 
Compensator 

-0.11 0.30 Discrete 

 
The power limits generators buses are represented in Table 2. Generators buses (PV) 2,5,8,11,13 and slack bus is 
1. 
 
Table 2: Generators Power Limits  
 

Bus  Pg Pgmin Pgmax Qgmin 
1 98.00 51 202 -21 
2 81.00 22 81 -21 
5 53.00 16 53 -16 
8 21.00 11 34 -16 
11 21.00 11 29 -11 
13 21.00 13 41 -16 
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Table 3: Values of Control Variables after Optimization  
 

Control 
Variables  

DEBA 
 

V1 1.0621 
V2 1.0531 
V5 1.0301 
V8 1.0412 
V11 1.0822 
V13 1.0621 

T4,12 0.00 
T6,9 0.02 
T6,10 0.90 
T28,27 0.91 

Q10 0.12 
Q24 0.12 
Real 

power loss 
4.2998 

Voltage 
deviation  

0.9092 

 
Table 3 shows the proposed approach succeeds in keeping the control variables within limits.   
Table 4 summarizes the results of the optimal solution obtained by various methods.  
 
Table 4: Comparison Results  
 
Methods Real power 

loss (MW) 
SGA (24) 4.98 
PSO  (25) 4.9262 
LP     (26) 5.988 
EP     (26) 4.963 
CGA (26) 4.980 
AGA (26) 4.926 
CLPSO (26) 4.7208 
HSA     (27) 4.7624 
BB-BC (28) 4.690  
DEBA 4.2998 
 
Then  DEBA has been tested in standard IEEE 118-bus test system [29] .The system has 54 generator buses, 64 
load buses, 186 branches and 9 of them are with the tap setting transformers. The limits of voltage on generator 
buses are 0.95, -1.1 per-unit., and on load buses are 0.95, -1.05 per-unit. The limit of transformer rate is 0.9, -1.1, 
with the changes step of 0.025. The limitations of reactive power source are listed in Table 5, with the change in 
step of 0.01. 
 
Table 5: Limitation of reactive power sources 
 

BUS 5 34 37 44 45 46 48 
QCMAX 0 14 0 10 10 10 15 
QCMIN -40 0 -25 0 0 0 0 

BUS 74 79 82 83 105 107 110 
QCMAX 12 20 20 10 20 6 6 
QCMIN 0 0 0 0 0 0 0 
 
In this case, the number of population is increased to 120 to explore the larger solution space. The total number 
of generation times is set to 200. The statistical comparison results of 50 trial runs have been list in Table 6 and 
the results clearly show the better performance of proposed algorithm. 
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Table 6: Comparison results  
 
Active power loss (p.u) BBO 

[30] 
ILSBBO/ 
strategy1 

[30] 

ILSBBO/ 
strategy1 

[30] 

Proposed 
DEBA 

min 128.77 126.98 124.78 120.01 
max 132.64 137.34 132.39 128.80 

Average  130.21 130.37 129.22 122.96 
 
7. Conclusion  
In this paper, Hybridized Self-adaptive Differential evolution algorithm with Biogeography-Based Algorithm has 
been successfully implemented to solve reactive power problem.  The proposed algorithm has been tested on the 
IEEE 30,118 -bus systems. The results are compared with the other heuristic techniques and the proposed 
algorithm established its efficiency and strength in minimization of real power loss. And control variables are 
well within specified limits. 
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