
Technical Disclosure Commons

Defensive Publications Series

December 06, 2018

A REINFORCEMENT LEARNING (RL)
MODEL FOR DYNAMIC OPTIMIZATION
OF SWITCH PORT/QUEUE BUFFER
ALLOCATION
Imran Pasha

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Pasha, Imran, "A REINFORCEMENT LEARNING (RL) MODEL FOR DYNAMIC OPTIMIZATION OF SWITCH PORT/
QUEUE BUFFER ALLOCATION", Technical Disclosure Commons, (December 06, 2018)
https://www.tdcommons.org/dpubs_series/1760

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/234668063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F1760&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1760&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1760&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/1760?utm_source=www.tdcommons.org%2Fdpubs_series%2F1760&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 5756

A REINFORCEMENT LEARNING (RL) MODEL FOR DYNAMIC OPTIMIZATION
OF SWITCH PORT/QUEUE BUFFER ALLOCATION

AUTHOR:
Imran Pasha

ABSTRACT

Techniques are described herein for a reinforcement learning (RL) model for

dynamic optimization of switch port/queue buffer allocation. According to the described

techniques, a trained neural network model can be installed on a switch or on a network

management server to dynamically adjust the shared/dedicated buffer allocation for the

low/high priority queues in case of a frame loss. The dynamic buffer adjustment continues

till the port/queue no longer experience a frame loss.

DETAILED DESCRIPTION

Typically, switch buffer management algorithms and templates allocate the per port

priority queue(s) buffer at the Line Card boot-up phase. Thereafter, irrespective of the

traffic profile observed, the buffer allocation remains unchanged. Consequently, the high

and low priority queues suffer from sub-optimal buffer allocation often resulting in frame

drops.

The techniques described herein provide a reinforcement learning model for

dynamic optimization of switch port/queue buffer allocation. In the Artificial

Intelligence/Machine Learning (AI/ML) realm, the problem can be framed as a

Reinforcement Learning (RL) Model that interacts in a dynamic environment and takes

corrective actions to ensure the high/low priority queue buffer allocation is optimized to

minimize the frame loss.

The dynamic environment monitors the buffer allocation, queue occupancy, queue

priority, Quality-of Service (QOS) configuration and per port and per queue traffic counters.

The environment robustness and sophistication can be enhanced by including more

relevant state. The model dynamically adjusts the buffer allocation in reaction to the

detection of frame loss. The buffer allocation adjustment continues till the frame loss is

2

Pasha: A REINFORCEMENT LEARNING (RL) MODEL FOR DYNAMIC OPTIMIZATION OF S

Published by Technical Disclosure Commons, 2018

 2 5756

rectified. The RL model can tap into the available buffer pool or steals from a port/queue

that might have excess buffer allocated.

The canonical Q-learning (model free) RL design for the agent and environment

interaction is shown in Figure 1 below.

Figure 1

Agent: takes actions (A)

Actions (A): Set of possible directives an agent can execute.

1. Increase buffer allocation

2. Decrease buffer allocation

3. No action

Environment: is the continued observed switch state the agent operates on.

1. Input: agent's current state and action

2. Output: agent's reward and next state

Two separate but related environments per slice (SOC) are modeled

1. Shared buffer for all ports, 8 queues/port

2. Dedicated buffer for all port, 8 queues/port

The high priority queue is allocated 10% of the total buffer.

The low priority queue is allocated 90% of the total buffer.

Matrix representation [N x M] = [Port[1x3], Queue[1x3], State[1x8]] = [9 x 8]

Agent

Environment

Action

R
t + 1

S
t + 1

Reward Rt State St

3

Defensive Publications Series, Art. 1760 [2018]

https://www.tdcommons.org/dpubs_series/1760

 3 5756

State (S): is an immediate situation the agent operates in and reacts to.

0 = Port (P) = 3 per SOC (adjustable to max per SOC, substantially reduces the

training time)

1 = Queue (Q) = 3 per port (adjustable to max per SOC, substantially reduces the

training time)

2 = Queue minimum threshold (QMin): below this threshold the Q experiences

packet drop

3 = Queue maximum threshold (QMax): the maximum buffer that can be

allocated to a Q

4 = Queue buffer allocation (QAlloc): the current buffer allocation for a given Q

5 = Port buffer available (PAvail): buffer available for a given Port (P)

6 = Queue packet drop (QDrop): represents whether a Q is experiencing packet

drop or not based on the queue occupancy and queue drop counter

(e.g., 0 = no drop, 1 = drop)

7 = Port packet drop (PDrop): represents whether a Port/(any queue) is

experiencing packet drop or not based on the per port, per queue drop counter

(e.g., 0 = no drop, 1 = drop)

Reward (R): measures the success or failure of an agent's actions.
1. idx = 9 [0,8]

2. Action = no action

1. (state[idx][2] == state[idx][4]) and (state[idx][6] == 0) and

(state[idx][7] == 1)

1. reward = 1

2. state[idx][3] == state[idx][4]) and (state[idx][5] >= 0) and (state[idx][6]

== 0) and (state[idx][7] == 0)

1. reward = 3

3. (state[idx][5] == 0) and (state[idx][6] == 1)

1. reward = 2

4. (state[idx][5] == 0) and (state[idx][7] == 0)

1. reward = 4

5. else reward = -1

4

Pasha: A REINFORCEMENT LEARNING (RL) MODEL FOR DYNAMIC OPTIMIZATION OF S

Published by Technical Disclosure Commons, 2018

 4 5756

3. Action = increment QAlloc

1. (state[idx][5] > 0) and (state[idx][6] == 1)

1. reward = 1

2. (state[idx][3] > state[idx][4]) and (state[idx][5] > 0) and (state[idx][7]

== 0)

1. reward = 2

3. else reward = -1

4. Action = decrement QAlloc

1. (state[idx][2] < state[idx][4]) and (state[idx][5] >= 0) and (state[idx][7]

== 1)

1. reward = 2

2. else reward = -1

5. Any other action

1. reward = -100

Discount factor (γ = 0.9): is multiplied with future rewards to dampen their effect on the

agent’s choice of action. It makes future rewards worth less than the immediate rewards.

Policy (π): is the strategy employed by the agent to determine the next action based on the

current state. It maps states to actions that promise the highest reward.

Q value (Q): maps state, action pairs to the highest combination of immediate reward with

all future rewards that might be harvested by the later actions. See Equation 1 below.

Q(St, at) (1 – α) . Q(St, at) + α . (rt + γ . maxa Q(St+1, at))

Q(St, at) old value, maxa Q(St+1, at) estimate of optimal value, (rt + γ . maxa Q(St+1, at) learned value

Equation 1

Alpha (α): is the learning rate dynamically adjusted by the optimizer function Adagrad

Epsilon (e = 0.25): exploration vs. exploitation factor e(x) := (0, x < 0), (0.25 - x, x >= 0

and x <= 0.25), (0, x > 0.25)

The proposed Q-learning Neural Network model according to the techniques

described herein improves the current solutions that deploy buffer allocation templates or

static buffer allocation algorithms, therefore, cannot respond to the dynamic changes in the

5

Defensive Publications Series, Art. 1760 [2018]

https://www.tdcommons.org/dpubs_series/1760

 5 5756

traffic profile. Specifically, the shared/dedicated buffer management model continuously

monitors the port/queue buffer allocation, queue occupancy and packet drop counters,

reacts intelligently and re-balances the buffer allocation to eliminate the packet drop

condition with > 98 % accuracy. Through training, the model becomes aware of the policy

concepts, such as available resource utilization, resource over-allocation, available

resource depletion, and release of resource from an over-allocated queue.

 A working model in accordance with the techniques described herein is provided.

The RL Neural Network model is implemented with Python and Keras library. The initial

results produce > 98 % accuracy in re-balancing the buffers. A few example results are

cited below. The model environment includes: 3 ports, 3 queues per port, high priority

queue buffer allocation 10% (10), low priority queues buffer allocation 90% (18, 1/5 scale

factor). The matrix representation [N x M], N = 9, M = 8, labels = [Port, Queue, QMin,

QMax, QAlloc, PAvail, QDrop, PDrop]

Example 1: Initial condition: packet loss experienced by all ports/queues

[[0. 0. 0. 10. 0. 28. 1. 1.]
[0. 1. 0. 18. 0. 28. 1. 1.]
[0. 2. 0. 18. 0. 28. 1. 1.]
[1. 0. 0. 10. 0. 28. 1. 1.]
[1. 1. 0. 18. 0. 28. 1. 1.]
[1. 2. 0. 18. 0. 28. 1. 1.]
[2. 0. 0. 10. 0. 28. 1. 1.]
[2. 1. 0. 18. 0. 28. 1. 1.]
[2. 2. 0. 18. 0. 28. 1. 1.]]

Model recommendation: all ports/queues experience no packet loss

[[0. 0. 9. 10. 10. 0. 0. 0.]
[0. 1. 3. 18. 3. 0. 0. 0.]
[0. 2. 15. 18. 15. 0. 0. 0.]
[1. 0. 3. 10. 5. 0. 0. 0.]
[1. 1. 13. 18. 15. 0. 0. 0.]
[1. 2. 5. 18. 8. 0. 0. 0.]
[2. 0. 6. 10. 8. 0. 0. 0.]
[2. 1. 3. 18. 4. 0. 0. 0.]
[2. 2. 15. 18. 16. 0. 0. 0.]]

6

Pasha: A REINFORCEMENT LEARNING (RL) MODEL FOR DYNAMIC OPTIMIZATION OF S

Published by Technical Disclosure Commons, 2018

 6 5756

Example 2: Random initial condition: packet drop at port 0/queue 0, port 0/queue 1, port

1/queue 1 and port 2/queue 1

[[0. 0. 9. 10. 0. 0. 1. 1.]
[0. 1. 15.18. 14. 0. 1. 1.]
[0. 2. 3. 18. 14. 0. 0. 1.]
[1. 0. 2. 10. 10. 0. 0. 1.]
[1. 1. 14.18. 0. 0. 1. 1.]
[1. 2. 4. 18. 18. 0. 0. 1.]
[2. 0. 4. 10. 10. 0. 0. 1.]
[2. 1. 2. 18. 0. 0. 1. 1.]
[2. 2. 16.18. 18. 0. 0. 1.]]

Model recommendation: all ports/queues, no packet loss

[[0. 0. 9. 10. 9. 0. 0. 0.]
[0. 1. 15.18. 15. 0. 0. 0.]
[0. 2. 3. 18. 4. 0. 0. 0.]
[1. 0. 2. 10. 4. 0. 0. 0.]
[1. 1. 14.18. 16. 0. 0. 0.]
[1. 2. 4. 18. 8. 0. 0. 0.]
[2. 0. 4. 10. 8. 0. 0. 0.]
[2. 1. 2. 18. 2. 0. 0. 0.]
[2. 2. 16.18. 18. 0. 0. 0.]]

7

Defensive Publications Series, Art. 1760 [2018]

https://www.tdcommons.org/dpubs_series/1760

	Technical Disclosure Commons
	December 06, 2018

	A REINFORCEMENT LEARNING (RL) MODEL FOR DYNAMIC OPTIMIZATION OF SWITCH PORT/QUEUE BUFFER ALLOCATION
	Imran Pasha
	Recommended Citation

	Microsoft Word - 899625_1

