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ABSTRACT 

Techniques are described herein for a reinforcement learning (RL) model for 

dynamic optimization of switch port/queue buffer allocation.  According to the described 

techniques, a trained neural network model can be installed on a switch or on a network 

management server to dynamically adjust the shared/dedicated buffer allocation for the 

low/high priority queues in case of a frame loss.  The dynamic buffer adjustment continues 

till the port/queue no longer experience a frame loss. 

 

DETAILED DESCRIPTION 

Typically, switch buffer management algorithms and templates allocate the per port 

priority queue(s) buffer at the Line Card boot-up phase.  Thereafter, irrespective of the 

traffic profile observed, the buffer allocation remains unchanged.  Consequently, the high 

and low priority queues suffer from sub-optimal buffer allocation often resulting in frame 

drops.   

The techniques described herein provide a reinforcement learning model for 

dynamic optimization of switch port/queue buffer allocation.  In the Artificial 

Intelligence/Machine Learning (AI/ML) realm, the problem can be framed as a 

Reinforcement Learning (RL) Model that interacts in a dynamic environment and takes 

corrective actions to ensure the high/low priority queue buffer allocation is optimized to 

minimize the frame loss.   

The dynamic environment monitors the buffer allocation, queue occupancy, queue 

priority, Quality-of Service (QOS) configuration and per port and per queue traffic counters.  

The environment robustness and sophistication can be enhanced by including more 

relevant state. The model dynamically adjusts the buffer allocation in reaction to the 

detection of frame loss.  The buffer allocation adjustment continues till the frame loss is 
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rectified. The RL model can tap into the available buffer pool or steals from a port/queue 

that might have excess buffer allocated.   

The canonical Q-learning (model free) RL design for the agent and environment 

interaction is shown in Figure 1 below. 

 

 

 

 

 

 

 

 

 

 

Figure 1 
 

Agent: takes actions (A) 

Actions (A): Set of possible directives an agent can execute. 

1. Increase buffer allocation 

2. Decrease buffer allocation 

3. No action 

Environment: is the continued observed switch state the agent operates on. 

1. Input: agent's current state and action 

2. Output: agent's reward and next state 

Two separate but related environments per slice (SOC) are modeled 

1. Shared buffer for all ports, 8 queues/port 

2. Dedicated buffer for all port, 8 queues/port 

The high priority queue is allocated 10% of the total buffer. 

The low priority queue is allocated 90% of the total buffer. 

Matrix representation [N x M] = [Port[1x3], Queue[1x3], State[1x8]] = [9 x 8] 
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State (S): is an immediate situation the agent operates in and reacts to. 

0 = Port (P) = 3 per SOC (adjustable to max per SOC, substantially reduces the 

training time) 

1 = Queue (Q) = 3 per port (adjustable to max per SOC, substantially reduces the 

training time) 

2 = Queue minimum threshold (QMin): below this threshold the Q experiences 

packet drop 

3 = Queue maximum threshold (QMax): the maximum buffer that can be 

allocated to a Q 

4 = Queue buffer allocation (QAlloc): the current buffer allocation for a given Q 

5 = Port buffer available (PAvail): buffer available for a given Port (P) 

6 = Queue packet drop (QDrop): represents whether a Q is experiencing packet 

drop or not based on the queue occupancy and queue drop counter  

(e.g., 0 = no drop, 1 = drop) 

7 = Port packet drop (PDrop): represents whether a Port/(any queue) is 

experiencing packet drop or not based on the per port, per queue drop counter 

(e.g., 0 = no drop, 1 = drop) 

Reward (R): measures the success or failure of an agent's actions. 
1. idx = 9 [0,8] 

2. Action = no action 

1. (state[idx][2] == state[idx][4]) and (state[idx][6] == 0) and 

(state[idx][7] == 1) 

1. reward = 1 

2. state[idx][3] == state[idx][4]) and (state[idx][5] >= 0) and (state[idx][6] 

== 0) and (state[idx][7] == 0) 

1. reward = 3 

3. (state[idx][5] == 0) and (state[idx][6] == 1) 

1. reward = 2 

4. (state[idx][5] == 0) and (state[idx][7] == 0) 

1. reward = 4 

5. else reward = -1 
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3. Action = increment QAlloc 

1. (state[idx][5] > 0) and (state[idx][6] == 1) 

1. reward = 1 

2. (state[idx][3] > state[idx][4]) and (state[idx][5] > 0) and (state[idx][7] 

== 0) 

1. reward = 2 

3. else reward = -1 

4. Action = decrement QAlloc 

1. (state[idx][2] < state[idx][4]) and (state[idx][5] >= 0) and (state[idx][7] 

== 1) 

1. reward = 2 

2. else reward = -1 

5. Any other action 

1. reward = -100 

Discount factor (γ = 0.9): is multiplied with future rewards to dampen their effect on the 

agent’s choice of action. It makes future rewards worth less than the immediate rewards. 

Policy (π): is the strategy employed by the agent to determine the next action based on the 

current state. It maps states to actions that promise the highest reward. 

Q value (Q): maps state, action pairs to the highest combination of immediate reward with 

all future rewards that might be harvested by the later actions.  See Equation 1 below. 

 

Q(St, at)  (1 – α) . Q(St, at) + α . (rt  + γ . maxa Q(St+1, at)) 

Q(St, at) old value, maxa Q(St+1, at) estimate of optimal value, (rt  + γ . maxa Q(St+1, at) learned value 

Equation 1 

 

Alpha (α): is the learning rate dynamically adjusted by the optimizer function Adagrad 

Epsilon (e = 0.25): exploration vs. exploitation factor e(x) := (0, x < 0), (0.25 - x, x >= 0 

and x <= 0.25), (0, x > 0.25) 

The proposed Q-learning Neural Network model according to the techniques 

described herein improves the current solutions that deploy buffer allocation templates or 

static buffer allocation algorithms, therefore, cannot respond to the dynamic changes in the 
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traffic profile.  Specifically, the shared/dedicated buffer management model continuously 

monitors the port/queue buffer allocation, queue occupancy and packet drop counters, 

reacts intelligently and re-balances the buffer allocation to eliminate the packet drop 

condition with > 98 % accuracy.  Through training, the model becomes aware of the policy 

concepts, such as available resource utilization, resource over-allocation, available 

resource depletion, and release of resource from an over-allocated queue. 

 A working model in accordance with the techniques described herein is provided.  

The RL Neural Network model is implemented with Python and Keras library.  The initial 

results produce > 98 % accuracy in re-balancing the buffers. A few example results are 

cited below.  The model environment includes: 3 ports, 3 queues per port, high priority 

queue buffer allocation 10% (10), low priority queues buffer allocation 90% (18, 1/5 scale 

factor).  The matrix representation [N x M], N = 9, M = 8, labels = [Port, Queue, QMin, 

QMax, QAlloc, PAvail, QDrop, PDrop] 

 

Example 1: Initial condition: packet loss experienced by all ports/queues 

[[ 0. 0. 0. 10. 0. 28. 1. 1.] 
[ 0. 1. 0. 18. 0. 28. 1. 1.] 
[ 0. 2. 0. 18. 0. 28. 1. 1.] 
[ 1. 0. 0. 10. 0. 28. 1. 1.] 
[ 1. 1. 0. 18. 0. 28. 1. 1.] 
[ 1. 2. 0. 18. 0. 28. 1. 1.] 
[ 2. 0. 0. 10. 0. 28. 1. 1.] 
[ 2. 1. 0. 18. 0. 28. 1. 1.] 
[ 2. 2. 0. 18. 0. 28. 1. 1.]] 
 

Model recommendation: all ports/queues experience no packet loss 

[[ 0. 0. 9. 10. 10. 0. 0. 0.] 
[ 0. 1. 3. 18. 3. 0. 0. 0.] 
[ 0. 2. 15. 18. 15. 0. 0. 0.] 
[ 1. 0. 3. 10. 5. 0. 0. 0.] 
[ 1. 1. 13. 18. 15. 0. 0. 0.] 
[ 1. 2. 5. 18. 8. 0. 0. 0.] 
[ 2. 0. 6. 10. 8. 0. 0. 0.] 
[ 2. 1. 3. 18. 4. 0. 0. 0.] 
[ 2. 2. 15. 18. 16. 0. 0. 0.]] 
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Example 2: Random initial condition: packet drop at port 0/queue 0, port 0/queue 1, port 

1/queue 1 and port 2/queue 1 

[[ 0. 0. 9. 10. 0. 0. 1. 1.] 
[ 0. 1. 15.18. 14. 0. 1. 1.] 
[ 0. 2. 3. 18. 14. 0. 0. 1.] 
[ 1. 0. 2. 10. 10. 0. 0. 1.] 
[ 1. 1. 14.18. 0. 0. 1. 1.] 
[ 1. 2. 4. 18. 18. 0. 0. 1.] 
[ 2. 0. 4. 10. 10. 0. 0. 1.] 
[ 2. 1. 2. 18. 0. 0. 1. 1.] 
[ 2. 2. 16.18. 18. 0. 0. 1.]] 
 

Model recommendation: all ports/queues, no packet loss 

[[ 0. 0. 9. 10. 9. 0. 0. 0.] 
[ 0. 1. 15.18. 15. 0. 0. 0.] 
[ 0. 2. 3. 18. 4. 0. 0. 0.] 
[ 1. 0. 2. 10. 4. 0. 0. 0.] 
[ 1. 1. 14.18. 16. 0. 0. 0.] 
[ 1. 2. 4. 18. 8. 0. 0. 0.] 
[ 2. 0. 4. 10. 8. 0. 0. 0.] 
[ 2. 1. 2. 18. 2. 0. 0. 0.] 
[ 2. 2. 16.18. 18. 0. 0. 0.]]  
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