
Technical Disclosure Commons

Defensive Publications Series

December 04, 2018

DATA-DRIVEN CHARACTERIZATION OF
TECHNICAL DEBT IN A COMPLEX
INFORMATION SYSTEM
Abhishek Pathak

Hossein Moosavi Kooshki

Mazhar Haque

Girish Babu

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Pathak, Abhishek; Kooshki, Hossein Moosavi; Haque, Mazhar; and Babu, Girish, "DATA-DRIVEN CHARACTERIZATION OF
TECHNICAL DEBT IN A COMPLEX INFORMATION SYSTEM", Technical Disclosure Commons, (December 04, 2018)
https://www.tdcommons.org/dpubs_series/1752

https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F1752&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1752&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1752&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/1752?utm_source=www.tdcommons.org%2Fdpubs_series%2F1752&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 5747X

DATA-DRIVEN CHARACTERIZATION OF TECHNICAL DEBT
IN A COMPLEX INFORMATION SYSTEM

AUTHORS:

Abhishek Pathak
Hossein Moosavi Kooshki

Mazhar Haque
Girish Babu

ABSTRACT

Presented herein are techniques that provide a holistic and integrated abstraction

among different categories of technical debt (TD) in a complex software system, as well

as among different TD-related data sources such as logs, traces, telemetry, and metrics.

The techniques presented herein allow for accelerated, automated, and evolutionary TD

management in a complex software development life cycle (SDLC). The techniques learn

the context throughout the SDLC pipeline and turn this context into actionable insights for

use in repaying the technical debt at the earliest stages of the development process. The

techniques presented herein provide an automated and low cost mechanism that may

reduce debt within a company.

DETAILED DESCRIPTION

Continuous and fast delivery of software system customer value needs to be

supported both in the short and long term. However, technical debt (TD) can severely

hamper both the evolution and maintenance of software systems. TD analysis is typically

performed in isolation and is limited to developer check-ins/post check-in baseline Static

Analysis (SA) runs or regression and/or Unit Test / Smoke Test (UT) scope. Missing

pieces in the TD jigsaw puzzle include, for example, lack of soft computing, data-driven

analytics, and a connected end-to-end pipeline. These missing pieces typically render TD

analysis usable only in certain contexts, and/or limits the scale of TD analysis in software

systems. At the telemetry end, conventional TD analysis techniques rely on

instrumentation and, at the developer end, conventional TD analysis techniques rely on

static analysis. However, in the conventional techniques, the overall system is not

2

Pathak et al.: DATA-DRIVEN CHARACTERIZATION OF TECHNICAL DEBT IN A COMPLEX INFO

Published by Technical Disclosure Commons, 2018

 2 5747X

connected as a data-driven pipeline to provide a meaningful automated machine learning

driven pipeline to connect code, static analysis, dynamic analysis, UT / Regressions, Bug

Tracking System, Technical Escalations, and End point telemetry data. Therefore,

conventional techniques are unable to provide TD in terms of currency (e.g., dollars), effort

estimates, Meant Time to Resolve (MTTR), and/or ETA estimates of any changes / fixes

to the system, as a connected pipeline. As a result, people in different parts of the SDLC

spectrum have different views of software quality and change impact.

According to recent research, the cost of managing code debt in large software

enterprises can by as much as 25% of the whole development time. Additional expenses

may also be incurred, for example, with complex software and unnecessary code (e.g.,

requiring extensive testing to eliminate unintended side-effects). For example, assuming a

company has roughly 70,000 employees, of which approximately thirty (30) percent (%)

are Engineers. Assuming the annual cost of an engineer to be roughly $200,000 USD, this

gives an estimate of (70,000*0.3*200,000*0.25) = $ 1.05B USD as the annual cost of

managing technical debt within this company. The total addressable market of TD

management, even only considering the enterprise software, is significant.

Current TD management is generally an ad-hoc process, where TD is mostly

tracked using sprint or product backlogs, common issue trackers or even simple excel

spreadsheets. Static analysis tools might be in use, but they do not provide a holistic view

of TD. Current efforts in TD management are not systematic and methodical and the

traditional X-ray based or drill-down based approaches lack the key features which would

be needed to provide a strong data-driven machine learning (ML)-based connected

pipeline. For example, conventional techniques lack a needed feedback loop system to

make the process adaptive and evolutionary (e.g., current systems require re-engineering

and re-tuning every couple of years). Additionally, conventional techniques do not address

change estimates at different levels of SDLC, and do not provide data in terms of currency

costs (e.g. dollars) of effort, aka Technical Debt. These conventional techniques are usually

limited to the developer space and do not venture beyond Bug Tracking System. A lack of

a data-driven approach makes most of the present TD estimations inherently static in

nature. Lack of soft computing approaches and conventional inclination towards hard-

3

Defensive Publications Series, Art. 1752 [2018]

https://www.tdcommons.org/dpubs_series/1752

 3 5747X

computing / number crunching base approaches make the resulting systems fragile to the

inherent ambiguity that comes with complex system software.

In summary, traditional TD estimations are based on static rule-based methods

and/or aggregating different Key Performance Indicators (KPIs) using human-selected

weights. The techniques presented herein provide a step towards a paradigm shift to a fully

data-driven approach. In particular, the techniques presented herein employ applied

mathematics and machine learning to create a solution with the following distinct merits -

-

 Machine Learning (ML)-powered.

 Fully data-driven and based on dynamic weighted sampling.

 Leading indicator to areas prone to TD in future.

 Vertically and horizontally scalable.

 Free of human bias.

 Constantly evolving (through reinforcement learning).

 Supplemented by prescriptive Insights.

Presented herein is data-driven TD analytics platform, referred to as “TeDDy,”

which connects and integrates multiple tools at different stages of the software

development life cycle (SDLC). The proposed solution begins by collecting pre check-in

data-driven metrics on code quality. From there, TeDDy goes from to check-in, Static

Analysis baseline and UT/ Regression, Bug Tracking System, and beyond to establish a

connected data-driven pipeline to benefit users. These users may be, for example, someone

invoking TeDDy as a stand-alone runnable application program interface (API) for branch

merges (e.g., to observe before and after measures of data-driven ML-based quality

indicators), someone writing code, someone debugging on a bug / crash at customer end,

etc. In its completed form, TeDDy should also be able to provide customers with insights

built on top of the inherent measures of Technical Debt (TD), System complexity, and the

involved “people effort.” As such, TeDDy (i.e., an ML-based and data-driven end-to-end

pipeline) provides reliable measures and indicators of Technical, Architectural,

Servicability and Security Debts to the development community, while also providing

valuable, actionable, and prescription based insights to the other end of the SDLC

4

Pathak et al.: DATA-DRIVEN CHARACTERIZATION OF TECHNICAL DEBT IN A COMPLEX INFO

Published by Technical Disclosure Commons, 2018

 4 5747X

spectrum. This includes the Technical Support Engineering, escalations teams, and end-

customers.

The techniques presented herein allow an aligned prioritization of TD across the

system and enable all of the TD management decisions to be completely data-driven

through leveraging the statistics collected on historical data or by benchmarking the system

against a collection of baselines. TeDDy also provides an integration abstraction among

different categories of TD in a complex information system, as well as among different

TD-related data sources like logs, traces, telemetry, and metrics. TeDDy provides a holistic

TD estimation metrics system, including trailing and leading indicators. Moreover, TeDDy

keeps the connective tissue of the events and affords the operational ability to drill down

to raw events. TeDDy also goes beyond descriptive and predictive analytics, by providing

actionable prescriptive insights on where to focus the improvement efforts.

Prior to TD analysis, the following data is collected:

 Types and subtypes of TD that needs to be measured/tracked/evaluated.

 Costs of most frequent changes to the system, including direct cost and opportunity

cost.

 Owners of TD issues across the system.

 Domains with debt incurred by the time of creation/old architecture/badly

instrumented code.

TeDDy provides a standardized, fully automated, and iterative process to identify,

estimate, prioritize, and repay TD.

The major steps in the TeDDy's workflow are as follows:

1. Correlate the pre-aggregated data to critical path analysis, which is crucial to

determine if components are failing.

2. Identify and categorize TD Key Performance Indicators (KPIs), including:

o code related features, e.g., code duplication, average/max number of LoC

per class/method, the degree of reliance on outdated

frameworks/libraries/applications.

o automated testing related features.

o security debt.

o servicability debt.

5

Defensive Publications Series, Art. 1752 [2018]

https://www.tdcommons.org/dpubs_series/1752

 5 5747X

o establish debuggabilty.

o static analysis related features.

o defect and escalation data related features.

o architecture related features, e.g., using dependency checkers.

o documentation related features.

3. Estimate the size of TD items (in dollars or engineering hours).

o Identify debt interest thresholds (the amount of interest paid or predicted if

the refactoring is not conducted) and provide assessment for rework

prioritization.

4. Aggregate TD items in a data-driven pipeline and using a dynamic weighted

sampling.

5. Learn from TD trends and predict future prone areas.

6. Give prescriptive and remedial pointers to prioritize.

o Describe managerial mechanisms to establish a feedback loop between TD

analyses and actions that must be performed.

o Implement plans to track the progress before and after prescriptions

Figure 1, below, illustrates the overall architecture of TeDDy.

FIG. 1

6

Pathak et al.: DATA-DRIVEN CHARACTERIZATION OF TECHNICAL DEBT IN A COMPLEX INFO

Published by Technical Disclosure Commons, 2018

	Technical Disclosure Commons
	December 04, 2018

	DATA-DRIVEN CHARACTERIZATION OF TECHNICAL DEBT IN A COMPLEX INFORMATION SYSTEM
	Abhishek Pathak
	Hossein Moosavi Kooshki
	Mazhar Haque
	Girish Babu
	Recommended Citation

	Microsoft Word - 898012_1

