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ABSTRACT 

A fundamental problem faces with network traffic is that the traffic is dynamic and 

evolves over time. Presented herein is a tool for monitoring feature distribution shift and 

possible efficacy implications. The tool takes advantage of the fact that labels are available 

on the training set, but not available in the production environment where the labelling 

cannot be done on the fly. The tool implicitly provides estimates of feature robustness to 

time shift for each feature. 

 

DETAILED DESCRIPTION 

The concept of data-driven classification of network traffic to different malware 

classes is important to a number of different types of network traffic analytics. However, a 

fundamental problem associated with data-driven classification of network traffic is that 

network traffic is dynamic and evolves over time. For example, new domains are registered, 

domains expire, popularity/usage of domains changes, etc.  Presented herein are techniques 

to detect shifts in distribution of features upon which a machine learning model operates, 

and for monitoring how the shifts affect the model once it is run in a production 

environment.  A trivial solution could be to monitor the number of false alarms, correct 

and missed predictions, and relate the shift to actual efficacy of the system. However, this 

is not feasible, because it is not possible to label each individual network request to decide 

which requests are truly malicious. Moreover, this would not provide any additional insight 

in possible robustness of utilized features, which can be used once a new version of a 

classifier is trained so that, for example, features extremely sensitive to time shift will be 

removed from the training process. 

Presented herein is a monitoring tool designed to monitor possible drops in efficacy 

related to distribution shift of features in relation to the deployed classifier.  The techniques 
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presented herein use quantile based binning of feature values and availability of labels on 

the training set to generate a simple, yet valuable, insight into these feature distribution 

shifts.  

For ease of description, the techniques presented herein are described in the context 

of network traffic analysis.  However, it is to be appreciated that the techniques presented 

herein are also easily applicable to other domains with similar properties. 

 

Short Introduction to Binning 

Binning is a common practice in majority of training algorithms, such as decision 

or random forests. It decreases the effective number of unique feature values to a 

predefined size.  For example, it is assumed that one-hundred (100) input numbers are 

uniformly sampled on interval (0, 1), a binning with four (4) equally-sized bins with lower 

and upper boundaries (0, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1) is applied, and each input 

number is represented by the center of the respective bin in to which it falls. This will lead 

to approximately a quarter (1/4th) of the numbers having the value 0.125, a second quarter 

of the numbers having the value of 0.375, a third quarter of the numbers having the value 

0.625, and the last quarter of numbers having the value 0.875. 

 

Quantile based Binning 

Continuing with the above example with 100 input numbers, the histogram of 

feature values for these 100 numbers would be flat only when the numbers are uniformly 

sampled.  However, if the boundaries would be given by the 1st, 2nd and 3rd quantile, i.e. 

(0, 1st-q), (1st-q, 2nd-q), (2nd-q, 3rd-q), (3rd-q, 1) so that the bins are not necessarily 

placed equidistantly (i.e., each may have different widths), then the histogram will become 

flat again, as illustrated in the example in the Figures 1A-1C, below. The quantile binning 

is often preferred in machine learning over uniform binning because it focuses on densely 

occupied parts of the feature space. 
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Figure 1A 

 

 
 

Figure 1B 
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Figure 1C 
 
 
Monitoring Tool Details 

 

 The facts described in the previous sections are used for the monitoring tool 

description, as follows.  In particular, the “development dataset” is divided into a “training 

dataset” and a “validation dataset” and quantile binning is performed on the training dataset.  

Additionally, one histogram is computed for each feature: e.g., one histogram for the 

distribution of transferred bytes between client and server, another histogram for duration 

of connections in the training dataset, etc.  The classifier is then trained on the binned 

feature set and, therefore, the classifier and the training feature value distributions are 

coupled.  Moreover, according to the discussion above, the histogram of the feature values 

for the training set is flat/uniform.  The monitoring tool, updated with the centers of the 

bins distributed according to the quantiles computed on the training set, is then deployed 

simultaneously with the model. 

 In general, the monitoring tool takes advantage of the fact that labels are available 

on the training dataset, but not available in the production environment where the labelling 

cannot be done on the fly.  The monitoring tool can then perform a number of tasks.  For 

example, one task of the monitoring tool is to continuously update the histogram of feature 

values on data processed in production environment for each feature.   

5

Defensive Publications Series, Art. 1726 [2018]

https://www.tdcommons.org/dpubs_series/1726



 5 5751X 

Another task of the monitoring tool is to, in time intervals (e.g., once per day) and 

for each feature, compare the actual histogram to the flat histogram (e.g., to the distribution 

of values in the training set). As described below, this can be done for example by 

computing the information entropy of the actual histogram.  

Another task of the monitoring tool is to, for each feature with similarity between 

the histograms (e.g., entropy of actual histogram) lower than a threshold: 

 Adjust the distribution of the feature values in the validation set to match the 

distribution obtained in production environment, this can be done easily by proper 

scaling of each feature value to match the desired distribution (probability mass 

redistribution). 

 Perform classification on the adjusted training set. 

 Report decrease in efficacy on the training set (this is motivated by the concept of 

permutation feature importance), and eventually, raise alarm if the decrease is 

significant (based on user pre-specified threshold). 

 

Shown below are Figures 2A, 2B, and 2C.  Figure 2A depicts a possible distribution 

shift of feature values from Figure 1. In Figure 2B, the red area 200 relates to the 

transformed distribution according to the distribution shift from the first image, shown with 

equally sized bins. In Figure 2C, the transformed values according to the distribution shift 

are shown in the lower part (orange) 201, while the upper part (blue) 202 illustrates the 

original samples from Figure 1). 
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Figure 2A 
 

 
 

Figure 2B 

200 
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Figure 2C 
 

Figures 3A, 3B, and 3C, below are similar to Figures 2A, 2B, and 2C, respectively 

except that the distribution shift is more significant.     

 

 
 

Figure 3A 
 

202 

201 
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Figure 3B 

 

 
Figure 3C 

 
 

The techniques presented herein implicitly provide estimates of feature robustness to 

time shift for each feature. It is given by the decrease of the efficacy of the system, when 

the distribution of feature values for a given feature is changed at some level of entropy 

(distance from the training distribution). The lower the decrease at a given level of entropy, 

the more robust is the feature. 

For flat (uniform) distribution, the information entropy is maximal. That is, having a 

flat histogram with N bins with equal heights normalized so that the sum across all the bins 

is 1, the entropy is equal to: sum{n=1..N} (-1/N log (1/N)) = log(N). If a logarithm with 

base N is chosen, the entropy for the flat histogram will be equal to 1, while the lower 
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bound for entropy of discrete variables is 0. This will provide similarity score ranging in 

the interval (0, 1) with 0 being very different from training distribution (all the feature 

values are focused in a single bin) and 1 when the distributions are equal.  The height of 

the bin is not important, only the fact that the shape of the histogram differs from being 

flat/uniform (i.e. does not have highest entropy). 
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