
Technical Disclosure Commons

Defensive Publications Series

November 21, 2018

REINFORCEMENT LEARNING BASED
RECOMMENDATION SYSTEM FOR
SOFTWARE UPGRADES
Parth Gaggar

Mansi Goel

Chandra Kamatam

Srinivasa Rao Aravilli

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Gaggar, Parth; Goel, Mansi; Kamatam, Chandra; and Aravilli, Srinivasa Rao, "REINFORCEMENT LEARNING BASED
RECOMMENDATION SYSTEM FOR SOFTWARE UPGRADES", Technical Disclosure Commons, (November 21, 2018)
https://www.tdcommons.org/dpubs_series/1696

https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F1696&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1696&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1696&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/1696?utm_source=www.tdcommons.org%2Fdpubs_series%2F1696&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 5750X

REINFORCEMENT LEARNING BASED RECOMMENDATION SYSTEM FOR
SOFTWARE UPGRADES

AUTHORS:

Parth Gaggar
Mansi Goel

Chandra Kamatam
Srinivasa Rao Aravilli

ABSTRACT

A software recommendation system that uses Reinforcement Learning to

recommend the most suitable upgradable software versions to a customer. The software

recommendation system takes into consideration the user's feedback and applies that

learning to unseen cases, resulting in a better customer experience.

DETAILED DESCRIPTION

Many of the most widespread and complex network issues are caused by devices

using the wrong software. For example, some estimates indicate that more than twenty-

five (25) percent of service requests submitted by customers are found to be caused by

network devices with the wrong software version. These problems can also be quite serious,

potentially exposing customers to software bugs, security risks, and high severity incidents.

Enormous amounts of time and resources are spent resolving these service requests.

Additionally, identifying the best software version for a given device is not always

straightforward and different tools may provide different recommendations. This can

confuse customers and reduce their confidence in the ability of vendors to accurately

address their problems. As such, there is a need of a recommendation system that the user

can upgrade to, without facing issues or downtime.

Presented herein is a software recommendation system that uses a sequential

decision based process and Reinforcement Learning to recommend the most suitable

upgradable software versions to a customer. The software recommendation system learns

from user feedback and accommodates that learning into its own decision process, to allow

for improved recommendations for unseen cases. For example, the software

2

Gaggar et al.: REINFORCEMENT LEARNING BASED RECOMMENDATION SYSTEM FOR SOFTWARE U

Published by Technical Disclosure Commons, 2018

 2 5750X

recommendation system is implemented, in part, in the form of a Markov Decision Process,

which uses Reinforcement Learning to incorporate the user feedback in the form of rewards

and policies. In certain examples, Q-learning with a function approximation technique,

sometimes referred to as a Double Deep Q Network, is used to train the software

recommendation system.

Recommendation Process

There are multiple factors that are considered while making a software

recommendation, including:

1. Currently running software - Currently running software can provide a variety of

information with respect to the device, namely the type of Image, configuration

(running and startup configuration), device information, and supported software for

that device. This information is fetched from the Service Request (SR) which is

filed against the device for a support engineer to work on.

2. Impacting Bugs - These are the bugs associated with the request. These bugs are

filed against the version running on the device, and it is expected that the

recommended version should have all or most of those bugs fixed.

3. Security Vulnerabilities - It is important that the recommend software has no or

minimal exposure to security vulnerabilities. Thus, the software vulnerabilities are

checked with respect to the current software and a software that is least vulnerable

is recommended.

4. End of Life - Every software has a defined lifecycle, which means it will go end of

support at a particular date. That means the system should recommend software

which is likely to last long and has the end of support date further into the future.

5. Current Deployment - A software which is currently deployed with a large number

of customers is likely to be a preferred software. Thus, the system looks to deploy

such software, which has a higher presence across the existing customers.

To recommend a software, the recommendation system first obtains the device details

from the Service Request (SR) and then takes the current software version as the starting

point. The recommendation system then identifies the candidate software versions based

3

Defensive Publications Series, Art. 1696 [2018]

https://www.tdcommons.org/dpubs_series/1696

 3 5750X

on where the bugs are fixed, and also the versions which have security vulnerability fixes.

The recommendation system iterates over the same obtained software versions and

identifies open security vulnerabilities, and again moves towards the versions containing

the fix for those issues (Figure 1). As a result, the recommendation system is searching in

a directed graph and the structure makes it inefficient to search across all possible states,

in order to reach the final state. The user’s past feedback is retrieved which acts as the

correct recommendation (V6 in Figure 1) and is incorporated within the algorithm to make

it learn from the feedback.

Figure 1- Recommendation as a Markov Decision Process.

4

Gaggar et al.: REINFORCEMENT LEARNING BASED RECOMMENDATION SYSTEM FOR SOFTWARE U

Published by Technical Disclosure Commons, 2018

 4 5750X

In Figure 1, the version on the top (Base) is the initial version. The version at the bottom

marked in green (V6) is suggested as the terminal version which is obtained as the

recommendation through user feedback.

Reinforcement Learning

In general, there are two reasons for choosing Reinforcement Learning (RL) for this

type of problem:

1. The main rationale is that finding a suitable software version is a sequential

decision-making process which can be modelled as a Markov Decision Process

(MDP). At every time step, given a software version V1 and the list of versions

(V2 -> VN) which contain the fixes of security vulnerabilities and bugs for V1. The

task is to find an optimal policy which decides which software version to choose

among the list of software versions. The purpose of RL is to solve this MDP and

come up with the optimal policy.

2. Also, RL enables to take into consideration the feedback given by the user in the

past. If the user had provided a negative feedback for the given recommendation,

the model will incorporate the negative feedback and try to improve the

recommendations by penalizing the inappropriate version and the path that led to

the inappropriate version.

Methodology

To apply reinforcement learning, it is appropriate to formulate the problem as a Markov

Decision Process (MDP). An MDP is by definition a five-tuple: <S,A,R,T, ߛ>, where S is

a set of states, A is a set of actions, R is a reward function that assigns a real value to each

state/action pair, and T is the state-transition function, which provides the probability of a

transition to a state, given an action taken from that state and ߛ	is the discount factor that

allows trade off b/w present and future rewards.

Here, each software version is represented as a state in the MDP. However, to preserve

the Markovian property, the information that is needed at every stage is also folded in to

5

Defensive Publications Series, Art. 1696 [2018]

https://www.tdcommons.org/dpubs_series/1696

 5 5750X

determine the next state. As a result, each state has sufficient information to determine a

stationary policy for that state.

Hence, the description of the MDP with respect to the application is as follows:

 States: Each state is defined by the Software, Security Vulnerabilities, Bugs,

Publish Date, and Deployment related information for that software.

 Actions: Action from each state is defined as the next state to which the agent

decides to move to.

 Transition Function: Transitions are taken as deterministic, and thus the actions

are indicative of the next state.

 Reward: Rewards for any non-terminal state transition is taken to be slightly

negative to incentivize shorter paths. Depending upon the user feedback, if the

feedback is positive (i.e., one of the recommendations is correct), there is a large

positive reward given for the terminal state transition, and if the feedback is

negative (i.e., all recommendations are incorrect), there is a large negative reward

given for the corresponding terminal state transitions.

 Discount Factor: This represents the horizon of the MDP. This value was taken on

the higher side so that the agents move towards the best global target, and also

avoids loops and longer paths.

Q learning with Function Approximation

Q Learning is an off-policy, model-free algorithm for solving MDPs. Due to its

model-free nature, it does not assume prior knowledge of the transition probabilities and

the rewards and explores the environment to learn them. The standard Q learning

implementation requires explicit representation of the state space, which is often not

feasible. There may be new additions to the state space by means of new software, and the

algorithm needs to handle such cases. This would mean the creation of an entirely new

MDP for every case. To avoid this, and generalize over these cases, a Double Deep Q

Network is used, which is a Deep Learning based Function Approximation based method

that uses samples from its past experience to learn the correct policy by estimating Q values

for the state action pair. This is commonly referred to as Experience Replay.

6

Gaggar et al.: REINFORCEMENT LEARNING BASED RECOMMENDATION SYSTEM FOR SOFTWARE U

Published by Technical Disclosure Commons, 2018

 6 5750X

Training

Figure 2, below, explains the end to end procedure followed for training the data. The

data is taken from the customer network, and used to identify the current version, and the

bugs and vulnerabilities that it is exposed to. Then subsequent versions are identified by

looking up fixes for the bugs and vulnerabilities, and the MDP is created. Rewards are

assigned based on customer feedback, and the network is trained with Double Deep Q

Networks.

Figure 2. Training flow. This includes fetching the data from customer network, creating

an MDP, and training a double DQN network for identifying the correct

recommendation.

Testing

Figure 3, below, illustrates the end to end procedure followed for testing the data. The

starting point here is taken as the current version from the customer network as well, and

the fixed versions are identified by the bug and vulnerability fixes. After that, the Deep Q

learner is used to identify the state with the highest Q value, then that version is taken as

the next base version, and this process is repeated until a terminal state is reached.

7

Defensive Publications Series, Art. 1696 [2018]

https://www.tdcommons.org/dpubs_series/1696

 7 5750X

Figure 3. Testing flow. This includes fetching the data from customer network, identifying

next versions, taking the ones with highest Q values, until the terminal version is reached

Technical Benefits

There are two key benefits of this approach:

1. Designing the MDP based on user feedback means that the recommendation

engine learns from the user. This is really important because the objective of any

recommendation engine is to predict results based on how a human would, given

the exact same choices.

2. Using the Q values to decide which version/path to select compared to going

down all paths saves a lot of time, by avoiding unnecessary deep searching. This

in turn allows for faster, near real-time recommendations.

Business Benefit

This technique presented herein allow for a way to transform a software

recommendation into a sequential decision based process. This is very useful for products

that require calculated sequential decisions to be made, as they can be modelled as Markov

Decision Processes. The technique presented herein allows for a way to account for user

feedback as part of the process, and hence can be useful in any case where the system must

continuously learn from the user.

8

Gaggar et al.: REINFORCEMENT LEARNING BASED RECOMMENDATION SYSTEM FOR SOFTWARE U

Published by Technical Disclosure Commons, 2018

	Technical Disclosure Commons
	November 21, 2018

	REINFORCEMENT LEARNING BASED RECOMMENDATION SYSTEM FOR SOFTWARE UPGRADES
	Parth Gaggar
	Mansi Goel
	Chandra Kamatam
	Srinivasa Rao Aravilli
	Recommended Citation

	Microsoft Word - 889982_1

