
Technical Disclosure Commons

Defensive Publications Series

November 20, 2018

User-Behavior-Guided Dynamic Loaders in
Embedded Operating Systems
Hanumant Prasad Singh

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Singh, Hanumant Prasad, "User-Behavior-Guided Dynamic Loaders in Embedded Operating Systems", Technical Disclosure
Commons, (November 20, 2018)
https://www.tdcommons.org/dpubs_series/1687

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/234667909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F1687&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1687&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1687&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/1687?utm_source=www.tdcommons.org%2Fdpubs_series%2F1687&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

User-Behavior-Guided Dynamic Loaders in Embedded Operating Systems

Abstract:

This publication describes a new user-behavior-guided dynamic loader in embedded

operating systems (OS). It is well-understood that embedded devices, such as smartphones, are

constrained in their random-access memory (RAM) resource. To better utilize the RAM resource,

developers use shared libraries when building their application software (often referred to as apps

or applications). Shared libraries reduce the memory footprint of individual application software.

However, the utilization of shared libraries, even though beneficial in minimizing the volatile

memory footprint, comes at a performance cost. The performance is improved, however, when

shared libraries are pre-loaded before the application software is accessed by the end user. Current

OS platforms lack the heuristic guided approach to predict which shared libraries are going to be

needed at the time the end user accesses the application software. To this end, a new dynamic

loader is developed to help predict the pre-loading of the needed shared libraries. To enable the

OS to predict and pre-load shared libraries tailored to the end user, the new user-behavior-guided

dynamic loader employs three components: user embedding, current time, and current location.

To improve the performance of the dynamic loader, federated learning is utilized to democratize

the computational power needed and benefit from each end user’s input data. By so doing, the

described techniques optimize the prediction of the relevant shared libraries to be pre-loaded, while

protecting the end user’s privacy. Consequently, user-behavior-guided dynamic loaders reduce

the memory pressure of the embedded devices, while optimizing the performance of these devices.

Keywords: user embedding, embedded operating systems, loader, dynamic loader, shared

libraries, neural network, dense neural network, deep learning, federated learning, dynamic linking

2

Singh: User-Behavior-Guided Dynamic Loaders in Embedded Operating System

Published by Technical Disclosure Commons, 2018

Background:

RAM resources constrain embedded devices, such as smartphones. To mitigate this,

developers use shared libraries when building mobile application software for these devices. The

use of shared libraries reduces the volatile memory footprint of individual application software, as

it allows the logic represented by a shared library to be resident in memory in only one location

but mapped to multiple process address spaces that use it. This removes the need to replicate a

specific logic for different application software, allowing them to reduce their own individual

memory footprint, which reduces memory pressure on the device’s OS. When no application is

using a memory resident shared library, the library is removed from RAM, freeing up the

associated memory cells. However, the utilization of shared libraries, even though beneficial in

minimizing the memory footprint, comes at a performance cost. Whenever an application accesses

symbols from a shared library, there is a chance that the library is not loaded in memory, or even

if it is loaded in memory, a symbol lookup within that library may still need to be performed. This

penalizes the startup and run time of the application. This time penalty is a combination of the

following operations at application startup and run time:

1) Load the requisite shared library from the non-volatile memory (often NAND flash) to

the volatile memory (RAM).

2) Run format parser to setup the library in RAM.

3) Perform the dynamic linking involving symbol look-up. The executable files (or

binaries) and libraries reference each-other through linking, which is achieved via a linker.

Depending on the operating system (OS), the symbol look-up procedure varies, but

ordinarily a look-up table is utilized.

Currently, operating systems lack the heuristic guided approach to predict which shared

libraries are going to be needed at the time the end user accesses the application software. It is

3

Defensive Publications Series, Art. 1687 [2018]

https://www.tdcommons.org/dpubs_series/1687

advantageous for the device’s OS to predict the end user’s device usage pattern, so the OS can pre-

load the requisite shared library from the non-volatile memory to RAM (above-mentioned step 1)

and run the format parser to setup the library in RAM (above-mentioned step 2) before the end

user accesses the application software.

Description:

In embedded operating systems, the set of shared libraries is fixed by the platform provider.

The application software that use the shared libraries are installed by end users from various online

sources. It is the end user’s specific mix of application software that determine the resident shared

libraries in RAM. In addition, the type of application software an end user is likely to use has a

correlation with which shared libraries are likely to be present in memory at any given time,

because the end user does not use all downloaded applications at once or on a regular basis. For

instance, many end users might have downloaded a specific application software, but only a few

end users might use this application on a regular basis. Furthermore, the end users who use this

specific application on a regular basis, might only do so during a given time of the day (e.g., after

7:00PM).

Each end user uses their mobile device in a unique pattern. Therefore, it is advantageous

to employ differently each end user’s pattern of starting and running applications on embedded

devices. Such patterns help predict the likely shared libraries to be pre-loaded for a given end user

at a given time. To this end, a user embedding is employed to create a representation of the end

user’s time-dependent behavior.

User embeddings are condensed vector representations of individual end users collected

from the usage pattern of application software installed on the embedded devices. A time-stamped

4

Singh: User-Behavior-Guided Dynamic Loaders in Embedded Operating System

Published by Technical Disclosure Commons, 2018

sequence when the end user visits applications during the day, is fed to a neural network to generate

a dense vector representing the end user’s behavior—a user embedding.

Fig.1 demonstrates an end user’s pattern of visiting the various application software, which

is fed to a neural network to produce a statistically determined user embedding. A periodic task

time-stamps and records the end user’s application software usage.

End User

Time-Stamped

Apps Usage

Output LayerInput Layer

Hidden Layers

(1, 2,…, Q)

App 1 @ time t

App 2 @ time (t+1)

App n @ time [t+(n-1)]

User Embedding 1

User Embedding 2

User Embedding R

User Embedding

Determination

Neurons

(1, 2, …, P)

Statistically Chosen

User Embedding

0 ≤ P(x) ≤ 1

Fig. 1

 The neural network in Fig. 1 illustrates an input layer, several hidden layers, and an output

layer. The input layer includes “n” number of applications, which are time-stamped. There are

“Q” number of hidden layers, with up to “P” number of neurons in each layer. There can be a

different quantity of neurons in each hidden layer. The output layer includes “R” number of bins

with different probabilities as the correct outcome. The bin with the closest probability to one (1)

is interpreted as the correct output.

The statistically determined user embedding is re-evaluated periodically based on a pre-set

time frame. The re-evaluation of user embedding is important because the end user might change

5

Defensive Publications Series, Art. 1687 [2018]

https://www.tdcommons.org/dpubs_series/1687

a usage pattern of the mobile device, and the user embedding is improved with each learning

exercise. The aim is to determine user embeddings that will aid the OS to only pre-load the

anticipated shared libraries expected to be used. There is a give-and-take between the

minimization of an application’s RAM footprint and the performance cost of not pre-loading a

shared library used by that application software. The re-iteration of this learning exercise benefits

the end user’s overall experience with the mobile device.

 As shown in Fig. 1, the training of the model to determine user embeddings is accomplished

by utilizing machine learning via a neural network. Furthermore, the following considerations are

employed to achieve optimal success without comprising the end user’s privacy:

1) A copy of the neural network model for predicting a user embedding resides on the

embedded device as well as on a cloud-computing server.

2) The cloud-computing server negotiates an appropriate time with the embedded device

so that any related activity between the server and the device is executed during a time

when the embedded device is not in use (e.g., during the end user’s sleep, morning meeting,

family dinner, religious activity, etc.).

3) During the pre-negotiated time, the embedded device performs the training of the model

using the collected data throughout the pre-determined time frame (e.g., the data collected

during the last 24 hours).

4) After the embedded device has completed the training of the model, also during the pre-

negotiated time, the updated model state is conveyed back to the cloud-computing server.

To protect the end user’s privacy, the collected data themselves need not be shared.

5) The model stored at the cloud-computing server benefits from such training exercises

that are being performed by multiple end users. Each end user contributes to create a better

6

Singh: User-Behavior-Guided Dynamic Loaders in Embedded Operating System

Published by Technical Disclosure Commons, 2018

model without sharing any individual input data. This is sometimes referred to as federated

learning.

 Fig. 2 illustrates the basic idea of federated learning. Federated learning is not a fully de-

centralized learning, but rather each end user contributes in accomplishing most of the training,

while the cloud-computing server is mainly responsible for coordinating this learning exercise.

Cloud

 1 2 3 4 5 6 … (n-1) n

 1 2 … k

a) The cloud-computing server identifies k

out of n number of embedded devices, which

are using a certain model.

Cloud

 1 2 3 4 5 6 … (n-1) n

 1 2 … k

b) The k identified embedded devices

receive rev 2.0 of the model.

rev 2.0 rev 2.0
rev 2.0

Cloud

 1 2 3 4 5 6 … (n-1) n

 1 2 … k

c) The k identified embedded devices,

individually perform training of the

received model, and compute updates using

their data.

Cloud

 1 2 3 4 5 6 … (n-1) n

 1 2 … k

d) Each k user shares their individual

updates with the cloud-computing server.

rev 2.1 rev 2.k
rev 2.2

Federated Learning

An iterative process.

Fig. 2

 Consider a case when many end users who have downloaded a specific application

software. The cloud-computing server notices that only a certain number of end users use this

application on a regular basis; thus, it identifies those end users as good candidates for model

training (Fig. 2a). The identified end users receive the most-current model of the user embedding

model (Fig. 2b). Each end user performs model training during a pre-set time frame, which can

7

Defensive Publications Series, Art. 1687 [2018]

https://www.tdcommons.org/dpubs_series/1687

differ for each end user (Fig. 2c). Then, each end user shares their own updates without sharing

the input data that were used to perform the model training (Fig. 2d). The cloud-computing server

collects and analyzes the individual updates, modifies the model, and sends it back to the end users

(back to Fig. 2b). Fig. 2 shows how the cloud-computing server and the individual end users are

working in concert to achieve the best-performing model through an iterative learning exercise.

User embedding (via time-stamping) is one piece of the complex puzzle to determine which

shared libraries need to be pre-loaded. The applications an end user chooses are also influenced

by current location (e.g., home, work, downtown, outdoors, etc.). In addition, current time gives

granularity on the day of the week (e.g., weekday, weekend, Friday night, Sunday morning, etc.),

or day of the year (e.g., Christmas, Easter, 4th of July in America, month of August in Europe,

etc.).

To achieve a truly user-behavior-guided dynamic loader, user embedding, current location,

and current time, are fed into yet another neural network, called a library-determination dense

neural network. This dense neural network determines which shared libraries need to be pre-

loaded. Fig. 3 illustrates the inputs and outputs to the library-determination dense neural network.

8

Singh: User-Behavior-Guided Dynamic Loaders in Embedded Operating System

Published by Technical Disclosure Commons, 2018

Library-Determination

Neural Network

Current TimeUser Embedding Current Location

Libraries to be pre-loaded,

where x1, y2, ...zn

represent library IDs.

Library x1

Library y2 Library zn

Fig. 3

The dense neural network shown in Fig. 3 has three types of inputs: user embedding

(already illustrated in Fig. 1), current time, and current location. There are multiple hidden layers

that are not shown in Fig. 3. The output layer is a list of libraries scheduled for pre-loading. As

in the case of user embedding, the training of the loader model is done using federated learning.

To evaluate the performance of the dynamic loader, the following data points are tracked:

1) Predicted shared libraries referenced by applications during tracking window—True

positives.

2) Predicted shared libraries evicted by the OS without reference—False positives.

3) Libraries not predicted but referenced—False negatives.

A system constrained by memory would choose to maximize true positives and minimize

false positives. The exclusion of a misidentified shared library is relatively inexpensive in terms

of input/output (I/O). Thus, the performance can be evaluated under a receiver operating

9

Defensive Publications Series, Art. 1687 [2018]

https://www.tdcommons.org/dpubs_series/1687

characteristic (ROC) curve, which is created by plotting a true positive rate (TPR) vs. a false

positive rate (FPR) and the settings are adjusted to optimize the prediction of the shared libraries

to be pre-loaded.

In conclusion, user embedding, coupled with current time and location, enable the OS to

predict and pre-load shared libraries tailored to the end user. Federated learning democratizes the

computational needed power and utilizes each the end user’s input data to optimize the prediction

of the relevant shared libraries to be pre-loaded, while protecting the end user’s privacy. The user-

behavior-guided dynamic loaders in the new OS reduce the memory pressure in the embedded

devices, while optimizing the performance of these devices.

10

Singh: User-Behavior-Guided Dynamic Loaders in Embedded Operating System

Published by Technical Disclosure Commons, 2018

	Technical Disclosure Commons
	November 20, 2018

	User-Behavior-Guided Dynamic Loaders in Embedded Operating Systems
	Hanumant Prasad Singh
	Recommended Citation

	Microsoft Word - User Behavior Guided Dynamic Loaders in Embedded Operating Systems

