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ABSTRACT 

Techniques are provided for associating similar devices and environments together 

so they can be effectively learned. Furthermore, a new device (e.g., smartphone) can be 

associated quickly with behaviors of other similar observed smartphones to avoid learning 

from scratch. Since wireless performance depends strongly on device and environments 

types, any machine learning method also needs to be conditioned on device and 

environment types. 

 

DETAILED DESCRIPTION 

Applying machine learning to optimize transmission parameters at a Wi-Fi® 

Access Point (AP) is a promising approach to improving Wi-Fi performance. However, the 

same transmission parameter may lead to different outcomes for different client types (e.g., 

between different types of smartphones) and different environments (e.g., conference room 

versus airport). There are two problems with directly learning separate models at each AP. 

First, it is ineffective in that contributions from client and environments are tangled and is 

not transferrable to a new client or a new location for the AP. Second, it is not scalable to 

train and deploy unique models for every client and environment combination. Instead, 

methods are needed to characterize client effects and environment effects to allow training 

one model that can be universally deployed. 

As such, it is desirable to train a universally deployable machine learning model 

which accounts for the different influences of devices types (e.g., between different types 

of smartphones) and environments (e.g., conference room versus airport). Techniques 

described herein involve capturing the influence of device and environment on wireless 

network performance via a unified model, which can be trained using the aggregate of data 

gathered across different sites. These techniques further involve representing device and 
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environment inputs as embedding vectors, so that proximity in the embedding space 

generally corresponds to the similarity in device/environment characteristics. This way, the 

model can easily incorporate new device types via continuous updates.  

Wireless network telemetry data may be collected from multiple deployment sites 

and fed to a central location for learning a universal deployment model. Each data entry 

corresponds to a single packet transmission, and includes the following: observations, 

actions, performance, client device Identifier (ID) and type, and environment ID. The 

observations may be of Channel State Information (CSI), Signal-to-Noise Ratio (SNR), etc. 

The chosen actions may be in the form of transmission parameters such as the number of 

spatial streams, multi-user versus single-user (MU/SU) mode, etc. The measured 

performance may include the resulting effective throughput, PHY rate, packet error rate, 

etc. Client device ID and type may include, e.g., the Media Access Control (MAC) address 

of the client, prior knowledge pertaining to the device type (e.g., manufacturer name, 

Operating System (OS) version, etc.), etc. The environment ID may be an identifier of the 

deployment environment (e.g., MAC address of the AP). 

One goal may be to train a universally deployable Machine Learning (ML) model 

for optimizing wireless network performance, e.g., selecting the best transmission 

parameters to maximize throughput that accounts for the device and environment 

variabilities. Generally, the ML model can be either a classifier or reinforcement learning 

policy.  

It is not scalable to train a ML model with individual device and environment 

identifiers as direct input, since only a subset of devices is observed at each location. 

Whenever a new device shows up at a location, the ML model will not be able to make an 

intelligent decision for this new device-environment combination before it spends some 

time collecting sufficient data for this new scenario. In contrast, the system described 

herein can still map the new device to the embedding vector, and its existing knowledge 

about similar devices at the same location. This way, the system can still perform inference 

on a new device using an existing model, while quickly updating the model for the new 

device via continuous training. 
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Figure 1 below illustrates the overall system diagram. Basically, training and 

inference of the universal model take as input the separately trained device and 

environment embedding vectors.  

 
Figure 1 

Figure 2 below illustrates how the device and environment embeddings are trained 

separately. 

 
Figure 2 

Using device embedding as an example, the observation vectors are chosen so that 

they reflect device characteristics (e.g., features used in Radio Frequency (RF) 

fingerprinting for devices). One or more candidate embedding learning techniques may be 
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employed. In a first example, one can train a device type classifier from the observation 

vectors. The final feature layer of the classifier can be used as the device embedding.  

In a second example, by leveraging prior knowledge on whether two devices belong 

to the same class/type, a pair of neural networks sharing identical architecture and 

parameters can be trained using the loss function derived from device similarity. The 

embedding vector corresponds to the final layer of the neural network.  

In a third example, an auto-encoder can be trained using observations that are 

known to reflect device characteristics. The resulting encoded observation may also serve 

as a device embedding. In this method explicit knowledge of device type may not be 

leveraged, but observation vectors that carry device information implicitly may still be 

relied on.  

As data accumulate over time, both the embedding networks and the universal 

model may be periodically updated in training and redeployed for inference.  

In practice, instead of repeatedly calculating the embedding from per-packet 

observations, one can further save computation by computing the embedding for the 

encountered device once and then caching the mapping from the device ID to embedding 

for future observations of the same device.  

Although the descriptions above focus on the device embeddings as an example, 

the same operations also apply to environment embeddings as described herein.  

The method described herein may be applied to various use cases in optimizing 

wireless networks. One specific example is optimizing the transmission parameters (e.g., 

SU/MU mode selection, number of spatial streams, PHY rate selection, etc.) at the AP for 

different clients based on their reported CSI over both uplink and downstream directions, 

SNR, etc. Another specific example is adjusting the receive power threshold for 

determining the handoff from one AP to another neighbor given the client’s location and 

channel observations, so that each client can minimize its handoff time or the probability 

of dropping an ongoing call at a given location. 

For both problems, the optimal decision needs to adapt to both the client device 

type and deployment environment. Provided is a method to learn a unified model by 

decomposing the device/environment factors as separately learned embeddings, without 

having to a separate the model per device-environment combination. 
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For the first use case on wireless transmission parameter optimization, using 

MU/SU Multiple-Input Multiple-Output (MIMO) mode selection as a concrete example, 

one embodiment is based on training a Deep Q Network (DQN) as the unified model (i.e., 

the policy engine). State (s) includes bi-directional CSIs, SNRs, device embeddings, and 

environment embeddings. Action (a) includes a binary choice whether to include the client 

in MU-MIMO groups. Reward (r) includes effective throughput, measured as R_PHY (1-

Packet Error Rate (PER)). Here, R_PHY indicates the PHY link rate corresponding to the 

chosen index, and PER denotes the resulting measured packet error rate.  

In other words, the goal is to learn a function Q(s,a) as the estimated reward 

(throughput) from the DQN network using measurement r as the reward. A standard 

implementation choice for the loss function for training the parameters in the DQN is given 

by L = sum_i [(Q(s_i, a_i)-r_i)]^2, where <s_i, a_i, r_i> are experience tuples collected at 

the AP, indexed by i.  

Figures 3 and 4 below illustrates the input/output of the DQN network, as well as 

how training/inference of the unified model is carried out in this embodiment.  

 
Figure 3 

 
Figure 4 
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Training of the device and environment embedding neural networks is carried out 

separately (see Figure 2 above). These two neural networks only need to run inference 

during training of the unified model. After centralized training, the unified model for the 

policy engine can be deployed back to individual sites for running inference locally. The 

key advantage of the scheme is that data may be collected from two sites, a library and a 

cafeteria. The use of embedding allows the data (<s_i, a_i, r_i>) collected from the two 

different sites to be interpreted together for central training. An alternative is to train a 

separate model for each site, but one is then left with the daunting task of merging 

knowledge from multiple models. 

In another embodiment, instead of employing neural networks for 

device/environment embeddings, one can directly calculate hand-crafted RF signatures of 

the device and environments based on intuitions. For instance, the device signature can 

contain power ramp-up profiles, frequency offset estimation as an indicator of the device’s 

oscillator stability, etc. 

The environment signature can contain known physical information pertaining to 

the AP’s deployment, such as actual location, room size, ceiling height, expected client 

density, etc. 

Techniques described herein provide the ability to train a unified model for data 

gathered across multiple sites, which automatically adapts its decision to different device 

types and deployment environments. This avoids the need for the unscalable approach of 

training separate models for different device-environment combinations. This also supports 

continuous training of the model and incremental learning of the embeddings, as new 

devices and new deployment environment are added to the system. 

In summary, techniques are provided for associating similar devices and 

environments together so they can be effectively learned. Furthermore, a new device (e.g., 

smartphone) can be associated quickly with behaviors of other similar observed 

smartphones to avoid learning from scratch. Since wireless performance depends strongly 

on device and environments types, any machine learning method also needs to be 

conditioned on device and environment types. 
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