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A Monotonicity Measure with a Fast Algorithm for 
Objective Evaluation of Tone Mapping Methods 

Abstract— The range of light intensity in the real world greatly 
exceeds what most existing devices can display. Various tone 
mapping methods have been developed to render HDR (high 
dynamic range) images or to increase local contrast of 
conventionally captured images. While local (or spatially varying) 
tone mapping methods are generally more effective they are also 
prone to artifacts such as halos.  Most existing methods for 
evaluating tone-mapped images focus on preservation of 
informative details and may not identify artifacts effectively. This 
paper proposes an objective metric based on a monotonicity 
measure that may serve as a baseline measure for artifacts due to 
intensity reversal. A naïve method to compute the metric has a 
high computational complexity of O(N2), where N is the total 
number of pixels. To make the metric acceptable for interactive 
applications, a fast algorithm with the complexity of O(N) is 
presented. Experimental results using real-world images are 
included to demonstrate the efficacy of both the metric and the fast 
algorithm.  

Keywords—tone mapping, high dynamic range (HDR), 
monotonicity, image quality assessment  

I. INTRODUCTION 

It is well known that the range of light intensity perceivable 
by human eyes greatly exceeds that which modern digital 
cameras and most display devices are capable of recording and 
reproducing [1][2][3][4]. To overcome these limitations, high 
dynamic range (HDR) imaging techniques such as multiple-
exposure photography and tone mapping are used to capture and 
reproduce such scenes. As commercial-grade HDR software 
such as HDR Efex Pro (Nik Collection) became freely available 
to lay users, image manipulation using tone mapping is 
increasingly popular [5]. 

Tone mapping methods may be classified into two types: 
global (or spatially uniform) and local (or spatially varying) 
[1][2][3]. Global mapping applies the same transformation to all 
pixels in the image, while local mapping may apply different 
transformations to different pixels based on their neighborhood 
properties. Most early research relied on subjective 
psychophysical experiments [6][7]. Although such evaluations 
were directly based on human perception, they required 
elaborate experimental setups and considerable time investment, 
making them ill-suited for real-time and automated applications. 
In addition, since the performance of local tone mapping 
methods is generally image-dependent, a method that is deemed 
to be good based on certain subjective experiments may not 
necessarily be good for other images. Recent research has begun 
to focus on objective evaluations. Yeganeh and Wang proposed 
tone-mapped image quality index (TMQI), a metric based on a 
multi-scale signal fidelity measure and a naturalness measure 
[8]. The naturalness measure is based on a statistical model built 

on approximately 3,000 8-bits/pixel grayscale images, taking 
into account the global intensity and contrast. The two measures 
are then combined nonlinearly with three parameters determined 
by learning. Nafchi et al. proposed FSITM (Feature Similarity 
Index for Tone-Mapped Images) based on a phase-derived 
feature map derived from multi-scale log-Gabor wavelets [9]. 
Hadizadeh and Bajić proposed a “bag of features” approach that 
includes eight features [10].  On the other hand, several no-
reference methods were also published recently. Gu et al 
proposed a blind tone-mapped quality index (BTMQI) based on 
global and local entropies, statistical naturalness and structural 
preservation [11]. Another method by Kundu et al. in is based 
on standard measurements of the bandpass and differential 
natural scene statistics (NSS) [12]. We noticed that the 
aforementioned methods mainly focused on preserving 
informative details and may neglect artifacts such as halos that 
may arise from localized processing [11].  

Monotonicity is a fundamental requirement for histogram-
modification techniques for regular grayscale images [13]. It is 
also a basic requirement for global tone mapping transforms 
(also known as tone reproduction curves) [2]. Violation of 
monotonicity may produce significant artifacts as a result of 
intensity reversal. However, because local tone mapping 
methods cannot be characterized by a common curve, this 
concept is not readily applicable.  

In this paper, we extend the monotonicity concept to an 
image-reference pair that is applicable to wide-ranging 
situations including local tone mappings. We then propose a 
metric based on the counting of intensity reversed pairs among 
all possible pixel pairs. However, a naïve counting method has 
the complexity O(N2), making it too slow to be useful for most 
practical applications. To alleviate this problem, we present a 
fast O(N) method for the most commonly encountered 8-bit 
images.  

II. PROPOSED METRIC AND FAST COMPUTATION 

First, we will extend the concept of monotonicity to an 
image-reference pair, and introduce a quantitative measure. We 
will then prove two important properties associated with the 
ordering problem and present a fast counting algorithm for 8-bit 
grayscale images. 

Given a reference image 
0I , the output image 

1I , and a 

positive threshold t, the intensity order of a pair of pixels at two 
locations  ji,  and  nm, is considered reversed if 

     nmjiIsignnmjiIsign ,;,,;, 10  and 

     tnmjiInmjiI  ,;,,;, 10
, where 

     nmIjiInmjiI ,,,;, 000   and 
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     nmIjiInmjiI ,,,;, 111  . Notice that the comparison 
with the threshold t may be defined in terms of percentage if the 
dynamic ranges of the input and output are different. 

Based on the above definition, a metric measuring the 
monotonicity of the transform ܶ:	ሼܫଵ ൌ ܶሺܫ଴ሻሽ may be defined 
as:  

NNr1                        (1) 

Where 
rN  is the total number of pixel pairs with reversed order 

and N is the total number of pixel pairs. Notice that the definition 
does not require T to be explicitly defined. It should also be 
noted that since all possible pixel pairs are considered, this 
metric should take all possible scales into account. The metric 
value is in the range of [0,1]. A transform is considered totally 
monotonic if 1 .  

Clearly, the computational complexity falls completely on 
the counting process. For an image of total N pixels there are 
  21NN  pixel pairs. Consequently, a naïve treatment of the 

general counting problem has complexity  2NO , which is too 
high for most interactive applications. Towards a fast counting 
algorithm, we explore some important properties.  

The differential I  as defined above is based on the pixel 
values at two locations of the same image. Another differential 
can be defined as      jiIjiIjiI ,,, 10  , which is based on 

the pixel values at the same location of the two images. The two 
differentials are related by 

       nmjiInmjiInmIjiI ,;,,;,,, 10        (2) 

Using this relationship, we can prove two properties. For 
simplicity, notations 

0I  
and 1I  are used in the following. 

Prop. 1. No order reversal for any pair of pixels if they have 
the same I value.  

Proof. For any two pixel locations  ji,  and  nm, , 

   nmIjiI ,,   leads to
10 II  and consequently

   10 IsignIsign  . Therefore the intensity order remains the 

same by definition. 

Prop. 2. For any pixel pair at  ji, and  nm,  that satisfies 

the conditions    10 IsignIsign   
and   tII  10

, the 

following is true:     tnmIjiI  ,,   

Proof: For all pixel pairs with    10 IsignIsign  , there 

are only two possibilities: 

1. 0 and 0 10  II  
or 0 and 0 10  II , in both 

cases,     tIIIInmIjiI  1010,,   

2. 0 and 0 10  II  
or 0 and 0 10  II , in both 

cases,       tIIIInmIjiI  1010,,   

Therefore     tnmIjiI  ,,  . 

 

However, the reverse may not be true. Although it can be 
proven easily that the condition     tnmIjiI  ,, 

 
leads to

      tnmIjiIIIII  ,,1010  , it doesn’t 

guarantee that    10 IsignIsign  . This means the set of 

pixel pairs            tIIIsignIsignnmji  1010,,,  

is a subset of         tnmIjiInmji  ,,,,,  . 

Utilizing the above two properties, a fast counting algorithm 
for 8-bit images is presented in the following. 

For 8-bit grayscale images, the range of I is  255,255 . 
We designed a matrix ∑ of counters to count all pixels with all 
possible values of I and

0I , as shown in Figure 1.  

The matrix ∑ 
has 511 rows 
corresponding to 
511 possible I
values. Each row in 
turn has 256 
columns, 
corresponding to 
possible values of

0I . Notice that 

cells of the same 
row have the same 

I and therefore no 
order reversal 
among them. Only 
cells in different 
rows with distance 
ଵܫߜ| െ |ଶܫߜ ൐  ݐ
need to be checked. 
Additionally, since 
pixel pair ሺ݅, ݆ሻ and 
ሺ݉, ݊ሻ  is 
considered the 
same as the pair 
ሺ݉, ݊ሻ  and ሺ݅, ݆ሻ , 
we only need to 
check ܫߜଵ െ ଶܫߜ ൐
ݐ  . Further 
computational 
savings may come 
from two aspects: 
1) the matrix is 
sparse in many 

List 1. Pseudocode for fast counting 

int FastCount(I0, I1, t)    { 
Initialize counters Σ	to zeros. 
// loop 1 
for all locations ሺ݅, ݆ሻ{ 
ܫߜ ൌ ,଴ሺ݅ܫ ݆ሻ െ ,ଵሺ݅ܫ ݆ሻ;  
Σሺܫߜ ൅ 255, ଴ሻܫ ൅ ൅; 

} 
 
count = 0; 
for(i=510;i>0;i--) { 
௜ܫߜ   ൌ ݅ െ 255; 
  for(m=(i-t);m>0;m--) { 
௠ܫߜ      ൌ ݉ െ 255;  
ܦ      ൌ ௜ܫߜ െ  ;௠ܫߜ
      if ܦ ൏  ݐ
           Continue; 
      for( j=0;j<255;j++) { 
          for( n=0;n<255;n++) { 
଴ܫ∆              ൌ ݆ െ ݊; 
ଵܫ∆              ൌ ଴ܫ∆ െ  ;ܦ
             if ݊݃݅ݏሺ∆ܫ଴ሻ ്  ଵሻܫ∆ሺ݊݃݅ݏ
൅ൌݐ݊ݑ݋ܿ                Σሺ݅, ݆ሻ ∙ Σሺ݉, ݊ሻ; 
          }; 
       }; 
   }; 
}; 
return count; } 

I=255, I0=0

...

I=0, I0=0

...

I=-255, I0=0

I=255, I0=128... ... I=255, I0=255

I=0, I0=128... ... I=0, I0=255

I=-255, I0=128... ... I=-255, I0=255

... ... ... ...

... ... ... ...

Figure 1. A matrix of counters for (I, I0) tuples. 
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cases, and 2) each cell generally represents many pixels such 
that one counting of cells may be equal to a substantial number 
of direct counting of pixels. Details of the algorithm are 
presented as a C-style  pseudocode in List 1. It should be pointed 
out that the pseudocode is mainly for the purpose of complexity 
analysis and omits some minor programming tricks. For 
example, an additional counter can be added for each row such 
that if a row has no entry, further checking can be 
skipped.pseudocode in List 1. It should be pointed out that the 
pseudocode is mainly for the purpose of complexity analysis and 
omits some minor programming tricks. For example, an 
additional counter can be added for each . 

Clearly, the complexity of the algorithm consists of two 
parts. The first part (the first loop) is  NO , where N is the total 
number of pixels. The second part depends only on the fixed-
size511 ൈ 256  matrix ∑ and is independent of N. Since the 
complexity for the second part is	ܱሺሺ511 ൈ 256ሻଶሻ the overall 
complexity is ܱሺܰ ൅ ሺ511 ൈ 256ሻଶሻ. This means that for images 
larger than 511 ൈ 256, the complexity of the proposed algorithm 
is guaranteed to be lower than that of naïve counting. In practical 
situations, there may be many pixels that do not change in 
intensity, resulting in a sparse matrix ∑. Therefore the proposed 
algorithm is faster even for images of smaller dimensions, which 
will be shown in the experimental section. 

III. EXPERIMENTAL RESULTS 

This section is intended to show the proposed metric 
computed on some representative cases, along with computation 
times in comparison with the naïve method. We also compared 
our metric with a recently published method using their publicly 
available implementation.  For these experiments, we chose 
Adobe Photoshop CS6 and the Nik Collection by Google 
(Version 1.2.11) (Nik Collection has since been acquired by 
DXO [5]). In particular, Photoshop CS6 was used for interactive 
global tone adjustment, and HDR Efex Pro 2 (in Nik Collection) 
was used for local tone mapping of both multiple and single 
images.  HDR Efex Pro 2 is a robust commercial-grade software. 
It can automatically produce visually appealing images in 
various preset styles for both multiple exposure and single 
exposure images without manual parameter tuning.   

The first case is shown in Figure 2. Three images in (a), (b) 
and (c) were taken in raw 14-bit/pixel format and in three 
exposure compensations EV-2, EV0 and EV+1, with a Nikon 
D800E DSLR fixed on a tripod. By merging the three images in 
HDR Efex Pro 2, two 16-bit images of different styles were 
produced. Separately, the single raw image with EV0 (b) was 
adjusted in Adobe Photoshop Camera Raw 9.1.1.461 convertor. 
The parameters adjusted including “highlights”, “shadows” and 
“whites”. This is a global adjustment (tone mapping). For 
evaluation, all final images including the reference image (b) 
were converted to 8-bit. All images were further downsized to 
three sizes keeping the original aspect ratio. For each set of 
images in the three sizes, the proposed metric  was computed 
(with t=10) and the elapsed times recorded. All computations 
were performed on a HP Z640 Workstation (Intel Xeon CPU 
@2.40GHz, 16GB RAM). For comparison, the same sets of 
images were evaluated using the no-reference methods [12]. The 
results are included in Table 1, where Tf and Tn are the elapsed 
time for the fast and naïve methods, respectively, H1 and H2 are 

computed scores using the publicly available codes of the 
HIGRADE-1 and HIGRADE-2 [12].  

Table 1. Evaluation results of the Case 1. 

 

Some observations can be made from the results. The 
proposed metric  achieved the highest score for the image of 
Fig. 2d obtained using global mapping. This is consistent with 
the results of subjective experiments [7]. The image (Fig. 2f) 
with the most significant local luminosity change scored the 
lowest. The metric is also consistent across three scales. In terms 
of computation time, the fast method is about 30 times faster 
than the naïve one even for the smallest image size of 360x240. 
With an approximately 8-second runtime even for the smallest 
image tested, the naïve method would be unacceptably slow for 
most applications. Regarding the methods HIGRADE-1 and 
HIGRADE-2 [12], we observed that the scores for individual 
images, and the ranking of those scores, were both inconsistent 
across scales. Moreover, H1 scores exceed 1.0 without a clear 
range.   

The second case is based on a single image, shown in Figure 
3. The image’s exposure was set based on the moon, causing the 

 

36
0 
x 

24
0  0.95 0.89 0.81 

Tf (s) 0.13 0.33 0.38
Tn(s) 7.28 8.55 9.22
H1 0.74 1.03 0.89
H2 0.56 0.56 0.56

51
2 
x 

34
2  0.95 0.88 0.81 

Tf (s) 0.17 0.44 0.49
Tn(s) 28.43 33.71 36.97
H1 0.92 1.02 1.17
H2 0.71 0.67 0.74

10
24

 x
 6

83
  0.95 0.89 0.81 

Tf (s) 0.26 0.50 0.61
Tn(s) 426.56 483.99 531.04
H1 1.06 1.14 1.21
H2 0.76 0.67 0.72

Figure 2. A multiple exposure case. (a)(b)(c) Three exposures with EV-
2.0, EV0.0 and EV+1.0, respectively. (d) Global tone adjusted using only 
single image (b). (e) HDR merged and tone mapped (preset 26, landscape, 
vignette), (f) HDR merged and tone mapped (preset 23, outdoor1). 

(a) (b) (c)

(d) (e) (f)

Fig. 2(b) Fig. 2(d) Fig. 2(e) Fig. 2(f) 
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forest to be too dark. It is desirable to keep the details of the 
moon while bringing back some details of the forest. Tone 
mappings similar to those in case 1 were applied. Application of 
global tone adjustments (including “highlights”, “shadows”, 
“blacks”, and “whites”) resulted in the image in Fig. 3b. The 
original image was also processed in HDR Efex Pro 2 in “Tone 
Mapping (Single Image)” mode. In two independent runs, 
images with the same presets as in case 1 were selected, as 
shown in Figure 3 (c) and (d). It can be observed that although 
the images adjusted by local tone mapping contain more details 
in the forest region than the globally adjusted images, they also 
contain substantially more non-uniform luminance artifacts. 
Compared to the original image, the images resulting from local 
tone mapping would appear unnatural. It should also be pointed 
out that the exact same local tone mapping method with default 
parameters produced different levels of artifacts in the two cases.  

The results for case 2 are presented in Table 2. The behavior 
of the proposed metric is consistent across scale and with case 
1. Runtime was faster than in case 1, probably due to the large 
region occupied by sky in the image.  Again, HIGRADE-1 and 
HIGRADE-2 scores are inconsistent across scales. In this case, 
HIGRADE-2 even returned some negative scores. In both cases, 
images with more details were scored higher despite their 
significant artifacts. 

IV. CONCLUSION 

In this paper, we extend the concept of monotonicity to a 
general image-reference pair and introduce a quantitative metric 
for tone mapping methods. We also presented a fast counting 
method that makes the metric computation acceptable for 
interactive applications. Our results demonstrated that the metric 
is consistent across scales with scores reflect perceivable 
artifacts. The experiments also validated the dramatic speedup 
afforded by the fast algorithm in comparison with the naïve 
method. Our experiments also uncovered some limitations of a 
recently published method [12]. Future studies may expand on 
the proposed metric by adding an exponential element to control 
the rate of decay, and by taking the amount of intensity reversal 
into account, in addition to the number of occurrences. 

Table 2. Evaluation results of the Case 2. 
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36
0x

24
0 

 0.99 0.87 0.76
Tf (s) 0.013 0.041 0.049
Tn(s) 9.79 11.13 12.23
H1 0.36 0.70 0.74
H2 0.036 0.17 0.39

51
2x

34
1 

 0.99 0.87 0.76
Tf (s) 0.021 0.057 0.076
Tn(s) 38.48 43.97 46.70
H1 0.36 0.90 0.94
H2 0.28 0.29 0.71

10
24

x6
83

  0.99 0.87 0.76
Tf (s) 0.045 0.11 0.14
Tn(s) 668.51 726.07 814.12
H1 0.04 0.32 0.85
H2 -0.26 -0.46 0.30

Figure 3. A single exposure case. (a) Captured image. (b) Global tone 
adjusted. (c) Single-image tone mapped (preset 26, landscape, vignette), 
(d) Single-image tone mapped (preset 23, outdoor1). 

(a) (b) 

(c) (d) 

Fig. 3(b) Fig. 3(c) Fig. 3(d) Fig. 3(a) 
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