
Technical Disclosure Commons

Defensive Publications Series

October 01, 2018

MACHINE LEARNING FOR THING
DETECTION, BEHAVIOR ANALYTICS, AND
THREAT DETECTION: AN EFFICIENT
ELIMINATION METHOD OF REDUNDANT
FEATURE-SUBSETS
Tomas Komarek

Jan Brabec

Lukas Machlica

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Komarek, Tomas; Brabec, Jan; and Machlica, Lukas, "MACHINE LEARNING FOR THING DETECTION, BEHAVIOR
ANALYTICS, AND THREAT DETECTION: AN EFFICIENT ELIMINATION METHOD OF REDUNDANT FEATURE-
SUBSETS", Technical Disclosure Commons, (October 01, 2018)
https://www.tdcommons.org/dpubs_series/1540

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/234667659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F1540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/1540?utm_source=www.tdcommons.org%2Fdpubs_series%2F1540&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 5695

MACHINE LEARNING FOR THING DETECTION, BEHAVIOR ANALYTICS, AND
THREAT DETECTION: AN EFFICIENT ELIMINATION METHOD OF

REDUNDANT FEATURE-SUBSETS

AUTHORS:
Tomas Komarek

Jan Brabec
Lukas Machlica

ABSTRACT

Techniques are described herein to efficiently detect redundant features in a

machine learning process. The techniques are able to compute feature redundancy not only

for a single feature at a time, but for any subset of features without the need to naively train

and evaluate a classifier for each combination of features.

DETAILED DESCRIPTION

In classification systems, often a large amount of features is engineered by domain

experts. The features are introduced to a learning algorithm, which may during the training

process neglect some of the features while promote others. However, in most of the cases

the classifiers, acting as a black box, do not directly indicate importance of a feature.

Therefore, even if a feature has almost no impact on a classification performance, it still

has to be extracted. In network intrusion detection systems, feature extraction related to

external intelligence, e.g. querying external database or crawling a website and parsing its

content, may become quite expensive, both computationally and financially. Paying for

several blacklist may not be needed if most of the usable content is available in bot external

database and websites.

To tackle this problem, methods such as permutation feature importance or feature

selection algorithms are proposed. The main disadvantage of these methods is that they fail

whenever multiple features are correlated, e.g. using more than two blacklist with similar

content, and/or they are not able to easily incorporate different types of features at the same

time, e.g. categorical, discrete and continuous.

Additional downsides of redundant features are (1) they slow down model training

and testing, (2) they make it harder to interpret and explain model’s decisions, and (3) they

deplete memory resources, e.g., the need to store training/testing datasets.

2

Komarek et al.: MACHINE LEARNING FOR THING DETECTION, BEHAVIOR ANALYTICS, AND THR

Published by Technical Disclosure Commons, 2018

 2 5695

One of the methods to remove redundant features is based on feature selection. In

a filter method, a Conditional Mutual Information Maximization (CMIM) algorithm may

be employed. However, the CMIM algorithm can be applied only for binary target

variables and binary or discrete features. The CMIM algorithm only uses pair-wise feature

independence.

In another embedded method, a random forest algorithm based on variable or

permutation importance may be used. Whenever two features are correlated (even

identical), none of them is identified as redundant by this approach.

In a wrapper method, a naïve approach may be adopted, which eliminates features

one by one. To eliminate the first feature (e.g. out of 40 features in total), it requires training

and testing 40 models on various feature subsets each time with one missing feature, and

comparing their performances with a model trained and tested on the full-feature set. A

feature missing in a feature subset that produces a model with the closest performance to

the original full-feature model then corresponds to the most irrelevant feature. These steps

can be repeated to eliminate other features. The one-by-one elimination is computationally

very intensive as it requires to train and test lots of models. Additionally, this approach

explores only pair-wise dependences. To explore a higher order dependences (e.g. triplets

of features), it would require training and testing exponentially more models.

Techniques disclosed herein provide an efficient method, which is able to compute

feature redundancy not only for a single feature at a time, but for any subset of features

without the need to naively train and evaluate a classifier for each combination of features.

One technique is to use the power of random feature selection in random forests.

More precisely, a random forest with increased number of trees is trained, where each tree

is built only on a subset of features, e.g. half of all the available features. For example, an

application is to assess redundancy of three features, namely {A, B, C}. To accomplish

this, only those trees are selected from the forest that do not use A, B nor C and form a new

forest RF2. Further, a forest RF1 is formed from trees that contain each of the three features.

If each tree contains half of the features picked randomly, and number of trees in the forest

is T = 96, then both forest will approximately have (1/2)3*96 = 12 trees. These two forests

score the testing samples from D_test, and the difference between performance of RF1 and

RF2 is computed. If the absolute difference is arbitrarily small or lower than a given

3

Defensive Publications Series, Art. 1540 [2018]

https://www.tdcommons.org/dpubs_series/1540

 3 5695

accepted performance decrease, then {A, B, C} are redundant. Note that the scoring of

D_test has not to be repeated for each comparison; it may be performed only once for all

the trees in the original forest. Decisions of the individual trees are remembered for

individual samples. The trees and the original dataset are not needed when redundancy of

any subset of the original feature set F is addressed.

The proposed method for eliminating feature subsets can be summarized as follows:

INPUT:

E – a number of eliminated features.

D_train, D_test – training and testing dataset with F features and M testing samples.

T – a number of decision trees that are usually trained within a random forest to

obtain a good prediction performance. For example, it is sufficient that T is set at 20 to 100.

OUTPUT:

O - an ordered list of feature subsets of size E. The lower value is assigned to a

feature subset, the more redundant/irrelevant the subset is.

PROCEDURE:

1. Randomly generate N = T * 2E feature subsets of size F/2 (without feature

replacement).

2. On each generated feature subset, train a decision tree using D_train.

3. Compute matrix of predictions P of size (M, N), where an element (m, n)

corresponds to a prediction of n-th tree on m-th testing sample from D_test.

4. For each possible subset S of E features (out of F feature in total) do:

a. Compose two random forests.

i. RF1: Identify decision trees (columns of matrix P) that were

trained on feature subsets containing all features from S.

ii. RF2: Identify decision trees (columns of matrix P) that were

trained on feature subsets that do not contain any feature from S.

b. Using matrix P aggregate decisions of both random forests over all testing

samples (using majority/soft-voting).

4

Komarek et al.: MACHINE LEARNING FOR THING DETECTION, BEHAVIOR ANALYTICS, AND THR

Published by Technical Disclosure Commons, 2018

 4 5695

c. Evaluate performance of both random forests with respect to true labels

(e.g. Area under Precision-Recall curve).

d. Push S into O with a value that equals to absolute value of a difference

between the two evaluation scores.

5. Sort O according to the assigned values in ascending order.

These steps are illustrated in Figure 1 below.

Figure 1

The exact formula for probability that a single tree contains a subset of k features

is:

5

Defensive Publications Series, Art. 1540 [2018]

https://www.tdcommons.org/dpubs_series/1540

 5 5695

When F is sufficiently large compared to i, it can be reasonably approximated by a simpler

formula (1/2)k. This approximation is used in the text above.

A small difference in performance between random forests that use S and that do

not use S indicates that the features in S are irrelevant or correlated with other involved

features. Optionally, irrelevant features can be eliminated using Variable Importance

method and the proposed method can be applied to identify only the redundant features.

The proposed method is very efficient as compared to the naive approach since the most

computationally heavy part, steps 2 and 3 in the procedure, which are model training and

testing on D_train, D_test, is performed only once. Once the matrix of predictions P is

computed, the method can be run again for different sizes of S from 1 to E without the need

to recompute the matrix P. All types of features (continuous, discrete, categorical, etc.) are

handled naturally. Scoring is performed from the perspective of a model (random forest)

that can also be used in the final deployment. In Addition, a standard implementation of

random forests can be used. The techniques are easily extendable to multi-class problems.

In summary, techniques described herein provide an efficient elimination scheme

for measuring the redundancy of features using tree-based machine learning models. The

main advantage over existing methods for feature selection or feature importance is that

the illustrated method is able to compute feature redundancy not only for a single feature

at a time, but also for any subset of features without the need to naively train and evaluate

a classifier for each combination of features.

6

Komarek et al.: MACHINE LEARNING FOR THING DETECTION, BEHAVIOR ANALYTICS, AND THR

Published by Technical Disclosure Commons, 2018

	Technical Disclosure Commons
	October 01, 2018

	MACHINE LEARNING FOR THING DETECTION, BEHAVIOR ANALYTICS, AND THREAT DETECTION: AN EFFICIENT ELIMINATION METHOD OF REDUNDANT FEATURE-SUBSETS
	Tomas Komarek
	Jan Brabec
	Lukas Machlica
	Recommended Citation

	Microsoft Word - 850046_1

