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ABSTRACT 

Techniques are described herein to efficiently detect redundant features in a 

machine learning process.  The techniques are able to compute feature redundancy not only 

for a single feature at a time, but for any subset of features without the need to naively train 

and evaluate a classifier for each combination of features. 

 

DETAILED DESCRIPTION 

In classification systems, often a large amount of features is engineered by domain 

experts. The features are introduced to a learning algorithm, which may during the training 

process neglect some of the features while promote others. However, in most of the cases 

the classifiers, acting as a black box, do not directly indicate importance of a feature. 

Therefore, even if a feature has almost no impact on a classification performance, it still 

has to be extracted. In network intrusion detection systems, feature extraction related to 

external intelligence, e.g. querying external database or crawling a website and parsing its 

content, may become quite expensive, both computationally and financially. Paying for 

several blacklist may not be needed if most of the usable content is available in bot external 

database and websites. 

To tackle this problem, methods such as permutation feature importance or feature 

selection algorithms are proposed. The main disadvantage of these methods is that they fail 

whenever multiple features are correlated, e.g. using more than two blacklist with similar 

content, and/or they are not able to easily incorporate different types of features at the same 

time, e.g. categorical, discrete and continuous. 

Additional downsides of redundant features are (1) they slow down model training 

and testing, (2) they make it harder to interpret and explain model’s decisions, and (3) they 

deplete memory resources, e.g., the need to store training/testing datasets. 
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One of the methods to remove redundant features is based on feature selection. In 

a filter method, a Conditional Mutual Information Maximization (CMIM) algorithm may 

be employed. However, the CMIM algorithm can be applied only for binary target 

variables and binary or discrete features. The CMIM algorithm only uses pair-wise feature 

independence.  

In another embedded method, a random forest algorithm based on variable or 

permutation importance may be used. Whenever two features are correlated (even 

identical), none of them is identified as redundant by this approach. 

In a wrapper method, a naïve approach may be adopted, which eliminates features 

one by one. To eliminate the first feature (e.g. out of 40 features in total), it requires training 

and testing 40 models on various feature subsets each time with one missing feature, and 

comparing their performances with a model trained and tested on the full-feature set. A 

feature missing in a feature subset that produces a model with the closest performance to 

the original full-feature model then corresponds to the most irrelevant feature. These steps 

can be repeated to eliminate other features. The one-by-one elimination is computationally 

very intensive as it requires to train and test lots of models. Additionally, this approach 

explores only pair-wise dependences. To explore a higher order dependences (e.g. triplets 

of features), it would require training and testing exponentially more models. 

Techniques disclosed herein provide an efficient method, which is able to compute 

feature redundancy not only for a single feature at a time, but for any subset of features 

without the need to naively train and evaluate a classifier for each combination of features. 

One technique is to use the power of random feature selection in random forests. 

More precisely, a random forest with increased number of trees is trained, where each tree 

is built only on a subset of features, e.g. half of all the available features. For example, an 

application is to assess redundancy of three features, namely {A, B, C}. To accomplish 

this, only those trees are selected from the forest that do not use A, B nor C and form a new 

forest RF2. Further, a forest RF1 is formed from trees that contain each of the three features. 

If each tree contains half of the features picked randomly, and number of trees in the forest 

is T = 96, then both forest will approximately have (1/2)3*96 = 12 trees. These two forests 

score the testing samples from D_test, and the difference between performance of RF1 and 

RF2 is computed. If the absolute difference is arbitrarily small or lower than a given 
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accepted performance decrease, then {A, B, C} are redundant. Note that the scoring of 

D_test has not to be repeated for each comparison; it may be performed only once for all 

the trees in the original forest. Decisions of the individual trees are remembered for 

individual samples. The trees and the original dataset are not needed when redundancy of 

any subset of the original feature set F is addressed. 

The proposed method for eliminating feature subsets can be summarized as follows: 

INPUT: 

E – a number of eliminated features. 

D_train, D_test – training and testing dataset with F features and M testing samples. 

T – a number of decision trees that are usually trained within a random forest to 

obtain a good prediction performance. For example, it is sufficient that T is set at 20 to 100. 

 

OUTPUT: 

O - an ordered list of feature subsets of size E. The lower value is assigned to a 

feature subset, the more redundant/irrelevant the subset is. 

 

PROCEDURE: 

1. Randomly generate N = T * 2E feature subsets of size F/2 (without feature 

replacement). 

2. On each generated feature subset, train a decision tree using D_train. 

3. Compute matrix of predictions P of size (M, N), where an element (m, n) 

corresponds to a prediction of n-th tree on m-th testing sample from D_test. 

4. For each possible subset S of E features (out of F feature in total) do: 

a. Compose two random forests. 

i. RF1: Identify decision trees (columns of matrix P) that were 

trained on feature subsets containing all features from S. 

ii. RF2: Identify decision trees (columns of matrix P) that were 

trained on feature subsets that do not contain any feature from S. 

b. Using matrix P aggregate decisions of both random forests over all testing 

samples (using majority/soft-voting). 
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c. Evaluate performance of both random forests with respect to true labels 

(e.g. Area under Precision-Recall curve). 

d. Push S into O with a value that equals to absolute value of a difference 

between the two evaluation scores. 

5. Sort O according to the assigned values in ascending order. 

These steps are illustrated in Figure 1 below. 

 
Figure 1 

The exact formula for probability that a single tree contains a subset of k features 

is: 
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When F is sufficiently large compared to i, it can be reasonably approximated by a simpler 

formula (1/2)k. This approximation is used in the text above. 

A small difference in performance between random forests that use S and that do 

not use S indicates that the features in S are irrelevant or correlated with other involved 

features. Optionally, irrelevant features can be eliminated using Variable Importance 

method and the proposed method can be applied to identify only the redundant features. 

The proposed method is very efficient as compared to the naive approach since the most 

computationally heavy part, steps 2 and 3 in the procedure, which are model training and 

testing on D_train, D_test, is performed only once. Once the matrix of predictions P is 

computed, the method can be run again for different sizes of S from 1 to E without the need 

to recompute the matrix P. All types of features (continuous, discrete, categorical, etc.) are 

handled naturally. Scoring is performed from the perspective of a model (random forest) 

that can also be used in the final deployment. In Addition, a standard implementation of 

random forests can be used. The techniques are easily extendable to multi-class problems. 

In summary, techniques described herein provide an efficient elimination scheme 

for measuring the redundancy of features using tree-based machine learning models. The 

main advantage over existing methods for feature selection or feature importance is that 

the illustrated method is able to compute feature redundancy not only for a single feature 

at a time, but also for any subset of features without the need to naively train and evaluate 

a classifier for each combination of features. 
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