
Technical Disclosure Commons

Defensive Publications Series

August 21, 2018

FAIR SCHEDULING FOR LOW LATENCY
AND HIGH THROUGHPUT STORAGE
SYSTEMS
Guillaume Ruty

Jerome Tollet

Aloys Augustin

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Ruty, Guillaume; Tollet, Jerome; and Augustin, Aloys, "FAIR SCHEDULING FOR LOW LATENCY AND HIGH THROUGHPUT
STORAGE SYSTEMS", Technical Disclosure Commons, (August 21, 2018)
https://www.tdcommons.org/dpubs_series/1427

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/234667548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F1427&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1427&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1427&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/1427?utm_source=www.tdcommons.org%2Fdpubs_series%2F1427&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

 1 5672

FAIR SCHEDULING FOR LOW LATENCY AND HIGH THROUGHPUT STORAGE
SYSTEMS

AUTHORS:

Guillaume Ruty
Jerome Tollet

Aloys Augustin

ABSTRACT

Techniques are described herein for storage systems to guarantee low latency for

small requests while maintaining the system’s optimal overall throughput. It batches

requests, classifies them, fairly allocates resources to them, and provides a mechanism to

expedite the processing of small requests. In today’s cloud environments, it is critical that

diverse applications run by multiple users can share access to generic storage systems

without affecting each other’s performance.

DETAILED DESCRIPTION

Storage systems are most often deployed on regular servers and rely on storage (e.g.,

hard disk drives, solid state drives, non-volatile memory express, etc.) and network devices

to service applications. These resource are by definition limited by server capacities, and

thus the behavior of servers that receive more requests that they can handle should be

managed. In this case servers typically serve clients proportionally to their demand and

capability.

When that issue arises, storage systems should instead allocate resources fairly

between requests. For example, requests coming from high performance clients can crush

requests coming from less performant clients. Small requests, which are more likely to be

part of some sort of control plane operation (e.g., permission verification, configuration,

etc.), can be delayed in the presence of simultaneous large requests. Such small requests

are typically more latency sensitive than large requests, which are more throughput

sensitive. However, giving priority to small requests should not lead to an underutilization

of the resource.

Figure 1 below illustrates a comparison of the behavior of traditional event-loop or

thread based storage server implementations with that of the techniques described herein.

2

Ruty et al.: FAIR SCHEDULING FOR LOW LATENCY AND HIGH THROUGHPUT STORAGE SYSTE

Published by Technical Disclosure Commons, 2018

 2 5672

Figure 1

In both cases, the total server throughput is ten (arbitrary unit). Whereas traditional

storage servers tend to slow all clients down when they are saturated, with the techniques

described herein only the most demanding clients are throttled.

Described herein is a way to allocate resources optimally that ensures that small

requests are treated rapidly without starving large requests.

Incoming requests may be allocated into classes. A two-pass allocation may be

made to allocate resources equally between classes. The potential remaining resources may

then be reallocated to classes that were not fully satisfied.

The incoming requests may be classified into classes. Typically this classification

may be made between different users if the storage system has an authentication system. It

may also be a segregation between e.g. data objects stored, types of data objects, storage

pools, etc. Furthermore, a custom defined cost function may associate a cost to every

request. The cost function may take into account the number of bytes to be read or written

by a request.

The storage system may process requests in batches in the following manner. The

storage system may have a parameter called a batch budget. For every new batch, the

storage system may classify requests that arrived during the previous batch as well as

requests that have not been completed during the previous batch. Each class has an

associated request list keeping track of the costs of requests. After this classification is done,

the storage system may distribute the batch budget to the classes in the following manner.

In the first phase, the batch budget is equally divided between classes. Some classes

may have an allocated budget greater than the sum of the cost of their requests. The

3

Defensive Publications Series, Art. 1427 [2018]

https://www.tdcommons.org/dpubs_series/1427

 3 5672

difference is called the unused budget of this class. In the second phase, while some classes

have some unused budget, this unused budget is equally redistributed between classes that

do not have an unused budget (i.e., classes that fully use their budget).

Once this allocation is done, the storage system processes the requests in each class

up to their allocated budget. If the sum of all requests’ costs is less than the batch budget,

all requests are fully processed during this batch. In this case, the next batch begins

immediately to avoid resource underutilization.

Figures 2 and 3 below illustrates an example of two consecutive batches. As shown

in Figure 2, at the beginning of the first batch, five requests arrive and correspond to three

different classes. The three classes have their budget allocations calculated.

Figure 2

As shown in Figure 3, at the end of the first batch, four new requests have arrived.

Two of the three classes have unfinished requests. The three classes have their budget

allocation for the new batch calculated.

Figure 3

At the end of the second batch, the class corresponding to a single large request is

not yet completed while the classes corresponding to small requests have had all their

requests answered. However, increasing the batch budget has a tradeoff. It makes the

4

Ruty et al.: FAIR SCHEDULING FOR LOW LATENCY AND HIGH THROUGHPUT STORAGE SYSTE

Published by Technical Disclosure Commons, 2018

 4 5672

batches longer, and favors the larger requests. It also typically optimizes disk access,

because disks are typically more efficient when they process few consecutive long

Input/Outputs (I/Os) rather than many small random I/Os. Because the batches last longer,

small requests arriving at the server while a batch is being processed have to wait for the

next batch, thus increasing their effective latency. This means that increasing the batch

budget optimizes the overall resource usage but penalizes small requests.

To be able to maintain a high budget to optimize the I/O ordering, a mechanism is

described to allow requests arriving during a batch to “join” the current batch. A new

parameter called the piggyback budget corresponds to an extra budget that is dedicated to

incoming requests. If a request arrives during the processing of a batch and its cost is less

than a configurable fraction of the piggyback budget (called piggyback threshold) and the

remaining part of the piggyback budget, it is processed during the current batch. Otherwise,

this request is processed in the next batch.

Figures 4-6 below illustrate a slightly different case than before. As shown in Figure

4, without a piggyback budget, if the batch budget is high, requests that are incoming during

the first batch have to wait for the batch to finish.

Figure 4

Figures 5 and 6 below illustrates how, with the piggyback budget, they are included

in the batch.

5

Defensive Publications Series, Art. 1427 [2018]

https://www.tdcommons.org/dpubs_series/1427

 5 5672

Figure 5

Figure 6

In the case where this piggyback budget is not fully utilized, the resource is not

underused. The batch just finishes earlier and the next batch starts.

A malicious class might attempt to abuse this piggyback budget by causing it to

consume more than its fair share of resources. Therefore, when an incoming request’s cost

is less than the piggyback threshold, the request is only added to the current batch if the

sum of its cost and of the budget allocated to its class during that batch is less than the

batch budget divided by the number of classes in the batch. Consequently, a class cannot

gain more budget from the piggyback budget than what would have been allocated to it

from the batch budget. Thus, a class does not benefit from splitting its requests versus

sending it in one block.

In summary, techniques are described herein for storage systems to guarantee low

latency for small requests while maintaining the system’s optimal overall throughput. It

batches requests, classifies them, fairly allocates resources to them, and provides a

mechanism to expedite the processing of small requests. In today’s cloud environments, it

is critical that diverse applications run by multiple users can share access to generic storage

systems without affecting each other’s performance.

6

Ruty et al.: FAIR SCHEDULING FOR LOW LATENCY AND HIGH THROUGHPUT STORAGE SYSTE

Published by Technical Disclosure Commons, 2018

	Technical Disclosure Commons
	August 21, 2018

	FAIR SCHEDULING FOR LOW LATENCY AND HIGH THROUGHPUT STORAGE SYSTEMS
	Guillaume Ruty
	Jerome Tollet
	Aloys Augustin
	Recommended Citation

	Microsoft Word - 824999_1

