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User interface for input with switches using machine learned Huffman codes 

ABSTRACT 

Users with special circumstances, such as limited mobility or physical strength, are often 

unable to utilize the normal keyboard of a device. To overcome these difficulties, these users 

utilize alternative mechanisms for typed input, such as a mouse, trackpad, switches, buttons, etc. 

These mechanisms operate by mapping the full set of possible inputs onto a limited number of 

buttons, which makes their use cumbersome and slow. This disclosure utilizes Huffman coding 

to optimize the encoding of a large set of symbols into a set of codewords based on the 

probability of use of each symbol, calculated via a trained machine learning model. Given a 

reasonably accurate machine-learned prediction model, the techniques of this disclosure ensure 

that generating the desired typed input can be accomplished with minimal number of switch 

selections. 
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BACKGROUND 

Users with special circumstances, such as limited mobility or physical strength, are often 

unable to utilize the normal keyboard of a device. These limitations apply to a traditional 

hardware keyboard connected to a desktop or laptop computer as well as to on-screen keyboards 
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commonly utilized on mobile devices. The use of the normal device keyboard for typed input can 

be cumbersome even for regular users when they encounter atypical situations, such as typing 

while carrying other objects. To overcome these difficulties, these users utilize alternative 

mechanisms for typed input, such as a mouse, trackpad, switches, buttons, etc. These 

mechanisms typically operate by mapping the full set of possible inputs onto a limited number of 

buttons, thus making their use cumbersome and slow. Moreover, these mechanisms rely on the 

visual layout of the applications, which is not designed with such atypical users or circumstances 

in mind, thus often making it necessary to input a large number of switch selections to provide 

the desired input. 

DESCRIPTION 

This disclosure describes techniques for mapping a set of inputs to a limited set of 

switches to minimize the time and effort required to provide input via input switches. 

Specifically, the techniques utilize Huffman coding to optimize the encoding of a large set of 

symbols into a set of codewords based on the probability of use of each symbol. The probability 

is calculated via a trained machine learning model. If the user provides permission, the model 

takes into account the user’s previous input and the user’s context, such as location, date, time, 

currently used application, etc. 

The large set of possible input symbols is first turned into a tree representation where 

each leaf node includes one of the symbols within the set along with the corresponding 

probability (provided by the trained machine learning model) of the symbol being the next input 

symbol desired by the user. This initial tree is processed iteratively and converted into an N-ary 

prefix tree where N is the number of input switches specified by the user, with a minimum of 2. 

At each iteration, a set of N nodes with the lowest probability of being the next input is merged 
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into a new node such that the original nodes are children of the new node. The resulting N-ary 

prefix tree forms a Huffman tree in which each non-leaf node has N children. 

 

Fig. 1: Example Huffman tree for 40 symbols and 2 switches displayed in two on-screen 

areas to select the desired input “W” 

To provide input, the user is shown an on-screen grid split into N areas with each area 

displaying the N children of the currently selected node, ordered by probability. The probability 

of the next desired input symbol being included within a given node is computed as the sum of 

the individual probabilities of all children of that node. Initially, the tree is presented with the 

root node selected and the N children of the root node occupying the N on-screen areas. When 

the user selects the desired area via a switch, the node assigned to that area is selected. If the 

selected node has children, the N on-screen areas are updated to display the N corresponding 

children of the selected node. Alternatively, if the node is a leaf node representing one of the 
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input symbols, this symbol is provided as input to the system, and the process restarts to obtain 

the next input symbol. Fig. 1 shows an example of the screens presented to a user with a 40-

symbol set and 2 on-screen areas when the desired user input is the letter “W.” 

 

Fig. 2: Generating a Huffman tree for switch input using a trained machine learning model 

Fig. 2 shows the components involved in the implementation of the techniques of this 

disclosure. With the user’s permission, a trained machine learning model (204) utilizes the user’s 

context (200) and other configuration information (202) in order to predict the probability 

corresponding to each of the symbols within the input set being the next input symbol desired by 

the user. The Huffman code generation module (206) takes these probabilities into account for 

generating a N-ary Huffman tree as described earlier, N is the number of switches (208) specified 

by the user. The user interface (210) displays the N-ary Huffman tree within N on-screen areas 

and the users to select among areas with switches until the desired input symbol is reached. 

In the description above, the switches used for symbol selection may be any suitable 

hardware or software selection mechanism, such as physical buttons, surfaces, etc. The symbols 
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in the input set can describe a single character, as on keyboards. However, a symbol may be any 

input, such as groups of characters, entire words, or control commands (e.g., function keys, 

arrow keys, etc.), to which the machine learning model can ascribe a probability. 

The machine learning model may be based on any suitable machine learning algorithm, 

such as decision trees, neural networks, support vector machines, etc. Given a reasonably 

accurate machine-learned prediction model, the techniques of this disclosure can ensure that 

minimal number of switch selections are required for generating the desired typed input. In a 

variation of the above described operation, the system can be simplified by pre-computing 

generic probabilities and the Huffman code associated with each symbol and utilizing this static 

code instead of computing the probabilities for all symbols each time a new symbol is typed. 

While such a simplification can reduce the amount of run-time computation, it may result in 

suboptimal performance, with more switch selections needed by the user to input the desired 

symbols. 

The ease of selecting the displayed symbols can be improved by using the Hu-Tucker 

algorithm to create an equivalent Huffman tree where the symbols are sorted alphabetically, thus 

ensuring that the symbols are sorted when presented on screen. While such an approach makes it 

easier and faster for the user to find the symbol on the screen, it may reduce the optimality of the 

generated Huffman tree. The symbols can also be made easier to scan by using colors to code 

symbols by type, such as uppercase, lowercase, numbers, special characters, control commands, 

etc. 

For users who are only able to use a single switch, the techniques of this disclosure may 

be provided by combining them with a regular switch access system and sweeping the on-screen 

areas. In such cases, areas later in the sweeping order need more time to be selected. This is 
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taken into account when building the Huffman code by assigning a cost to each area that 

increases with its position, thus reflecting the increased time needed to select that area, and using 

an algorithm such as that described in M.J. Golin and G. Rote in [1]. 

The techniques of this disclosure may be used as an additional mode or a replacement for 

on-screen keyboards on mobile devices as well as traditional computers. The techniques may 

also be provided as extensions or add-on for specific applications, such as web browsers. 

Further to the descriptions above, a user may be provided with controls allowing the user 

to make an election as to both if and when systems, programs or features described herein may 

enable collection of user information (e.g., information about a user’s social network, social 

actions or activities, profession, a user’s preferences, or a user’s current location), and if the user 

is sent content or communications from a server. In addition, certain data may be treated in one 

or more ways before it is stored or used, so that personally identifiable information is removed. 

For example, a user’s identity may be treated so that no personally identifiable information can 

be determined for the user, or a user’s geographic location may be generalized where location 

information is obtained (such as to a city, ZIP code, or state level), so that a particular location of 

a user cannot be determined. Thus, the user may have control over what information is collected 

about the user, how that information is used, and what information is provided to the user. 

CONCLUSION 

Mechanisms that allow typed input via a limited number of switches operate by mapping 

the full set of possible inputs onto a limited number of buttons, thus making their use 

cumbersome and slow. This disclosure utilizes Huffman coding to optimize the encoding of a 

large set of symbols into a set of codewords based on the probability of use of each symbol, 

calculated via a trained machine learning model. Given a reasonably accurate machine-learned 
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prediction model, the techniques of this disclosure can ensure that minimal number of switch 

selections will be required for generating the desired typed input. An input symbol may be any 

input, such as groups of characters, entire words, or control commands (e.g., function keys, 

arrow keys, etc.), to which the machine learning model ascribes a probability. The techniques of 

this disclosure may be used as an additional mode or as a replacement for on-screen keyboards 

on mobile devices as well as traditional computers. 
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