
Technical Disclosure Commons

Defensive Publications Series

August 14, 2018

User Interface for Input With Switches Using
Machine Learned Huffman Codes
Etienne J. Membrives

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Membrives, Etienne J., "User Interface for Input With Switches Using Machine Learned Huffman Codes", Technical Disclosure
Commons, (August 14, 2018)
https://www.tdcommons.org/dpubs_series/1406

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/234667527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F1406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1406&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/1406?utm_source=www.tdcommons.org%2Fdpubs_series%2F1406&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

User interface for input with switches using machine learned Huffman codes

ABSTRACT

Users with special circumstances, such as limited mobility or physical strength, are often

unable to utilize the normal keyboard of a device. To overcome these difficulties, these users

utilize alternative mechanisms for typed input, such as a mouse, trackpad, switches, buttons, etc.

These mechanisms operate by mapping the full set of possible inputs onto a limited number of

buttons, which makes their use cumbersome and slow. This disclosure utilizes Huffman coding

to optimize the encoding of a large set of symbols into a set of codewords based on the

probability of use of each symbol, calculated via a trained machine learning model. Given a

reasonably accurate machine-learned prediction model, the techniques of this disclosure ensure

that generating the desired typed input can be accomplished with minimal number of switch

selections.

KEYWORDS

● Huffman codes

● accessibility

● Input device

● Input switches

● Input screen areas

● N-ary tree

BACKGROUND

Users with special circumstances, such as limited mobility or physical strength, are often

unable to utilize the normal keyboard of a device. These limitations apply to a traditional

hardware keyboard connected to a desktop or laptop computer as well as to on-screen keyboards

2

Membrives: User Interface for Input With Switches Using Machine Learned Huff

Published by Technical Disclosure Commons, 2018

commonly utilized on mobile devices. The use of the normal device keyboard for typed input can

be cumbersome even for regular users when they encounter atypical situations, such as typing

while carrying other objects. To overcome these difficulties, these users utilize alternative

mechanisms for typed input, such as a mouse, trackpad, switches, buttons, etc. These

mechanisms typically operate by mapping the full set of possible inputs onto a limited number of

buttons, thus making their use cumbersome and slow. Moreover, these mechanisms rely on the

visual layout of the applications, which is not designed with such atypical users or circumstances

in mind, thus often making it necessary to input a large number of switch selections to provide

the desired input.

DESCRIPTION

This disclosure describes techniques for mapping a set of inputs to a limited set of

switches to minimize the time and effort required to provide input via input switches.

Specifically, the techniques utilize Huffman coding to optimize the encoding of a large set of

symbols into a set of codewords based on the probability of use of each symbol. The probability

is calculated via a trained machine learning model. If the user provides permission, the model

takes into account the user’s previous input and the user’s context, such as location, date, time,

currently used application, etc.

The large set of possible input symbols is first turned into a tree representation where

each leaf node includes one of the symbols within the set along with the corresponding

probability (provided by the trained machine learning model) of the symbol being the next input

symbol desired by the user. This initial tree is processed iteratively and converted into an N-ary

prefix tree where N is the number of input switches specified by the user, with a minimum of 2.

At each iteration, a set of N nodes with the lowest probability of being the next input is merged

3

Defensive Publications Series, Art. 1406 [2018]

https://www.tdcommons.org/dpubs_series/1406

into a new node such that the original nodes are children of the new node. The resulting N-ary

prefix tree forms a Huffman tree in which each non-leaf node has N children.

Fig. 1: Example Huffman tree for 40 symbols and 2 switches displayed in two on-screen

areas to select the desired input “W”

To provide input, the user is shown an on-screen grid split into N areas with each area

displaying the N children of the currently selected node, ordered by probability. The probability

of the next desired input symbol being included within a given node is computed as the sum of

the individual probabilities of all children of that node. Initially, the tree is presented with the

root node selected and the N children of the root node occupying the N on-screen areas. When

the user selects the desired area via a switch, the node assigned to that area is selected. If the

selected node has children, the N on-screen areas are updated to display the N corresponding

children of the selected node. Alternatively, if the node is a leaf node representing one of the

4

Membrives: User Interface for Input With Switches Using Machine Learned Huff

Published by Technical Disclosure Commons, 2018

input symbols, this symbol is provided as input to the system, and the process restarts to obtain

the next input symbol. Fig. 1 shows an example of the screens presented to a user with a 40-

symbol set and 2 on-screen areas when the desired user input is the letter “W.”

Fig. 2: Generating a Huffman tree for switch input using a trained machine learning model

Fig. 2 shows the components involved in the implementation of the techniques of this

disclosure. With the user’s permission, a trained machine learning model (204) utilizes the user’s

context (200) and other configuration information (202) in order to predict the probability

corresponding to each of the symbols within the input set being the next input symbol desired by

the user. The Huffman code generation module (206) takes these probabilities into account for

generating a N-ary Huffman tree as described earlier, N is the number of switches (208) specified

by the user. The user interface (210) displays the N-ary Huffman tree within N on-screen areas

and the users to select among areas with switches until the desired input symbol is reached.

In the description above, the switches used for symbol selection may be any suitable

hardware or software selection mechanism, such as physical buttons, surfaces, etc. The symbols

5

Defensive Publications Series, Art. 1406 [2018]

https://www.tdcommons.org/dpubs_series/1406

in the input set can describe a single character, as on keyboards. However, a symbol may be any

input, such as groups of characters, entire words, or control commands (e.g., function keys,

arrow keys, etc.), to which the machine learning model can ascribe a probability.

The machine learning model may be based on any suitable machine learning algorithm,

such as decision trees, neural networks, support vector machines, etc. Given a reasonably

accurate machine-learned prediction model, the techniques of this disclosure can ensure that

minimal number of switch selections are required for generating the desired typed input. In a

variation of the above described operation, the system can be simplified by pre-computing

generic probabilities and the Huffman code associated with each symbol and utilizing this static

code instead of computing the probabilities for all symbols each time a new symbol is typed.

While such a simplification can reduce the amount of run-time computation, it may result in

suboptimal performance, with more switch selections needed by the user to input the desired

symbols.

The ease of selecting the displayed symbols can be improved by using the Hu-Tucker

algorithm to create an equivalent Huffman tree where the symbols are sorted alphabetically, thus

ensuring that the symbols are sorted when presented on screen. While such an approach makes it

easier and faster for the user to find the symbol on the screen, it may reduce the optimality of the

generated Huffman tree. The symbols can also be made easier to scan by using colors to code

symbols by type, such as uppercase, lowercase, numbers, special characters, control commands,

etc.

For users who are only able to use a single switch, the techniques of this disclosure may

be provided by combining them with a regular switch access system and sweeping the on-screen

areas. In such cases, areas later in the sweeping order need more time to be selected. This is

6

Membrives: User Interface for Input With Switches Using Machine Learned Huff

Published by Technical Disclosure Commons, 2018

taken into account when building the Huffman code by assigning a cost to each area that

increases with its position, thus reflecting the increased time needed to select that area, and using

an algorithm such as that described in M.J. Golin and G. Rote in [1].

The techniques of this disclosure may be used as an additional mode or a replacement for

on-screen keyboards on mobile devices as well as traditional computers. The techniques may

also be provided as extensions or add-on for specific applications, such as web browsers.

Further to the descriptions above, a user may be provided with controls allowing the user

to make an election as to both if and when systems, programs or features described herein may

enable collection of user information (e.g., information about a user’s social network, social

actions or activities, profession, a user’s preferences, or a user’s current location), and if the user

is sent content or communications from a server. In addition, certain data may be treated in one

or more ways before it is stored or used, so that personally identifiable information is removed.

For example, a user’s identity may be treated so that no personally identifiable information can

be determined for the user, or a user’s geographic location may be generalized where location

information is obtained (such as to a city, ZIP code, or state level), so that a particular location of

a user cannot be determined. Thus, the user may have control over what information is collected

about the user, how that information is used, and what information is provided to the user.

CONCLUSION

Mechanisms that allow typed input via a limited number of switches operate by mapping

the full set of possible inputs onto a limited number of buttons, thus making their use

cumbersome and slow. This disclosure utilizes Huffman coding to optimize the encoding of a

large set of symbols into a set of codewords based on the probability of use of each symbol,

calculated via a trained machine learning model. Given a reasonably accurate machine-learned

7

Defensive Publications Series, Art. 1406 [2018]

https://www.tdcommons.org/dpubs_series/1406

prediction model, the techniques of this disclosure can ensure that minimal number of switch

selections will be required for generating the desired typed input. An input symbol may be any

input, such as groups of characters, entire words, or control commands (e.g., function keys,

arrow keys, etc.), to which the machine learning model ascribes a probability. The techniques of

this disclosure may be used as an additional mode or as a replacement for on-screen keyboards

on mobile devices as well as traditional computers.

REFERENCES

1. Golin, Mordecai J., and Günter Rote. "A dynamic programming algorithm for

constructing optimal prefix-free codes with unequal letter costs." IEEE Transactions on

Information Theory 44, no. 5 (1998): 1770-1781.

2. Hu, Te C., and Alan C. Tucker. "Optimal computer search trees and variable-length

alphabetical codes." SIAM Journal on Applied Mathematics 21, no. 4 (1971): 514-532.

3. Roark, Brian, Melanie Fried-Oken, and Chris Gibbons. "Huffman and linear scanning

methods with statistical language models." Augmentative and Alternative

Communication 31, no. 1 (2015): 37-50.

4. Kim, Seung Wook, and Frank Rudzicz. "Combining word prediction and г-ary Huffman

coding for text entry." SLPAT 2016 Workshop on Speech and Language Processing for

Assistive Technologies, 13 September 2016, San Francisco, USA

5. Huffman, D. (1952). "A Method for the Construction of Minimum-Redundancy Codes".

Proceedings of the IRE. 40 (9): 1098–1101.

8

Membrives: User Interface for Input With Switches Using Machine Learned Huff

Published by Technical Disclosure Commons, 2018

	Technical Disclosure Commons
	August 14, 2018

	User Interface for Input With Switches Using Machine Learned Huffman Codes
	Etienne J. Membrives
	Recommended Citation

	Microsoft Word - LE-1090-01-DPub (DPub-51775) - DRAFTdoca3939b8d-1c22-4ebf-b494-69784093e403.docx

