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MANAGING UNKNOWN-UNKNOWNS IN CYBER-SECURITY 
 

AUTHORS:   
David A. Maluf 

 
ABSTRACT 

Techniques are described herein for managing unknown-unknowns in cyber-

security. Trust degradation is a precursor index to failure. The use cases of scoring the trust 

degradation in a system span to almost every aspect in networking, edge and cloud included. 

A well devised Trust Evaluation Function (TEF) will cover many use cases: for example 

(1) better and adaptive private key management (e.g., re-keying); (2) better and adaptive 

end user experience password management and its fine grain monitoring in a data center; 

(3) better and adaptive digital asset certifications; (4) troubleshooting; and (5) real-time 

scalability and risk assessment for extremely large network, for example in federated cloud 

environment. The features of a digital trust scoring will start to reflect the likelihood of 

erosion of trust created on day 0. Platform independency is achieved when the score is a 

degradation of the trust and not the trust value alone. A trust value may start erroneously, 

but the rate of change may lead to continuous evaluation. Therefore, the originating trust 

is set as a prior. Erosion will thus work with time against the assumed original trust. In the 

example of an expiration date or a combinatorial complexity erosion of a private key, the 

realization of a trust erosion is not a Boolean fail pass type, but a relative factor number. 

On a comprehensive integrated analytical dashboard, the trust factor produces the percent 

life left of given a digital secret. 

 

DETAILED DESCRIPTION 

Trust under certainty does not recognize the element of unknown | unknown. 

Simply, the foundational models of certainty lie in the notion that the definition of prior is 

what has been known or measured. No provisions are made otherwise for undeclared 

variables. Trust under uncertainty intends to model the unknown.  

But the argument remains that trust under uncertainty will use certainty approaches 

once certain criteria are met. For general discussion purposes, trust under uncertainty obeys 

the law of information preservation as defined in Information Theory principles. The clear 
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difference is that trust under uncertainty will optimally extrapolate, in terms of new a 

posteriori hypothesis, trust outside the scope of the known models and priors. 

With lack of ideal models, the concept of discarding random variables for density 

functions is of interest. For example, the individual outcome of a specific atom in a 

Brownian motion is not of interest. On the other hand, the density function of few atoms is 

useful. Thus the kinetic energy of the collective makes sense based on the sampling of 

density functions.  

Similarly, trust under uncertainty relies on density functions and is measured in 

terms of entropy uncertainty. It reflects the uncertainty of a whole system not dependent 

on the assumed models. There are three basic definitions that trust may fall under.  

First, outcomes are known. In this case, the range of outcomes is known and the 

outcome is also known. This is the easiest way to make risk management decisions. This 

reflects a deterministic event process. This is also known as “you know what you know” 

paradigm or the kk paradigm. 

Trust can be summarized as making decisions based on what is “known to be 

known” or {k | k}. The model parameters are defined and deterministic. Observations in 

{k | k} have known means but zero variances: y(t) = f(μ). 

Second, outcomes are unknown, but probabilities are known. In this case, the range 

of outcomes are known but the individual outcome is unknown. This reflects a 

deterministic process with known density functions. All of the outcomes are known as are 

the probabilities of each. This is also known “you know what you don’t know paradigm” 

or “k￢k paradigm.”  

Trust expands to this category as what is “known to be unknown” or {k | ¬k}. The 

model parameters are defined with density mass functions. Observations in {k | ¬k} have 

known means but positive variances: y(t) = f (μ, ). 

Third, outcomes are unknown and probabilities are unknown. In this case, the 

distribution of outcomes are unknown and the individual outcomes must be unknown. This 

is also known as the “you don’t know what you don’t know” paradigm or the “￢k￢k 

paradigm.” 

Trust extends to the empty knowledge (or lack thereof). It deals with decision when 

nothing is known as it is unknown what is unknown {¬k | ¬k}. The consideration of 
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external priors such as boundary conditions and reasoning assume sampling for data around 

asymptotic directions in the direction of these boundaries.   

A clarification on the meaning of “data” is provided as follows. Computer sciences 

conceptualize data to be defined to meet known types. The generalization of these 

definitions presents a diverse, but limited, representation that extends from basic binary 

representations (i.e. [0,1]) to templated sequences to ordered complex data structures. An 

example would be the Internet Protocol (IP) network header stack and yet another a 

database record.   

Data analysis for cyber-security can therefore be processed in two different 

approaches. The first approach is by the introspection and analysis of the data in these 

structures. The second approach is the process of segmenting the data into types and 

structures that brings forth the corpus of analysis about the segmentations.  The formulation 

of an objective analysis about the occurrence of data becomes critical as the new 

information about the data is made as an objective measure. Each process of formulating 

the new information about the data is referred to as an experiment. 

Most solutions in machine learning and artificial intelligence assume that 

deterministic models have strong notions of priors and models. Conversely, trust under 

uncertainty investigates how to rationalize data with incomplete priors and weak models.    

Trust under uncertainty is a form of risk assessment for complex systems and can 

be illustrated by the complex aspects of cyber-security. Complex systems are hard to model 

without making assumptions and assumptions are detrimental in cyber-security given their 

impact. In accordance with models taking assumptions, uncertainty is treated herein as the 

unknown growth beyond the made assumptions. In experimentations, the boundary 

estimate for the gap between the models and the measurements can be estimated in relative 

terms and is proportional to the models estimates. However, when reaching beyond the 

boundary, the process of extrapolation is necessary. Optimal extrapolation (and 

interpolation) is thus established in probabilistic terms beyond the model’s boundaries. For 

these multidimensional complex problems, uncertainty is computed by experimental 

sampling with maximum entropy estimations. 

Suppose an extrapolation outcome function optimizes a certain objective. It 

becomes pivotal to sample in the newly extrapolated neighborhood. Given an iterative 
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process, stochastic interpolation and extrapolation is an equivalent process of an event 

based optimization search. With the notion of time, the process defines a time series 

optimization search as in system theory. Independency is defined when the data is 

calculated on Information Theory principles. Maximizing the information is an entropy 

minimization search. The final outcome of an iterative process is a continuous search with 

optimal sampling objectives minimizing criteria. 

Optimal sampling leads to better prior knowledge. Optimal sampling turns the 

objective towards optimizing the covariance density instead of optimizing the individual 

variances or the diagonal elements. Maximum Entropy Sampling (MES) does that. 

Sampling might have to touch deeper in the underlying law of physics to fill in the 

correlating elements of the prior among the sparse but measured density functions do not.  

An example of maintaining an analytical continuity is to assume some given data 

points over a grid represent a random surface obeying the law of continuous surface. 

Regardless of the data density, interpolation and extrapolation obey the continuity 

constraints. It is expressed mathematically as a smoothing function in the inverse 

covariance of the grid points. This operation is critical when the data points are sparse and 

when extrapolation can be evaluated over the range [-∞; +∞].   

The case above distinguishes key aspects of the heart rate monitor in two-fold. First, 

it separates the data as part of an experiment, say ξ, being designed independently of the 

models’ g(t) parameters. Second, the mapping of the experiment data to the model 

parameters has the system realizations that the data complexity may subceed or exceed the 

model’s characteristics.  

In the counterintelligence case, it would be naive to assume that “more data” is the 

only answer, as the latter is not often feasible when time is limited. In the example of 

measuring hidden intent, data sparsity limits any reasoning into a comprehensive 

approximation. Inversely, models will also perform poorly given the spectrum spread of 

the deviations. These examples emphasize cyber-security frameworks, as well as human 

behavior in Human Intelligence (HUMINT) cases, both of which are very complex systems.  

To further illustrate a hidden intent, uncovering deviant intent in the constituent of 

HUMINT evaluations (e.g., stress detectors) can be used.  Suppose the only data available 

is the highly dependent heart rate measurements and a minimal model g(t) representing the 
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expected prior in terms of means and distributions. In HUMINT, the deviations from the 

prior constitutes the “intelligence” and not the expected values themselves. The outcome 

is therefore to compute for the deviation deduced (subtracted) from the experiment and 

model.    

In the cases where the model characteristic is less than ideal, the model realization 

Degree of Freedom (DOF) is less to the data degree of freedom available from the data, 

the deviations constitute as loss of information when not accounted. The magnitude of the 

loss is in the order of number of degree of freedom away from what is expected. For 

example, if g(t) does not model data modulation, assume min, max and average and 

distributions, the information in first and second moment of the data variability (e.g., heart 

rate variability) are lost.      

While multi-objective optimizations fall under constraint optimization, the focus is 

on the byproduct of convoluting the models (e.g., g(t)) with measurements from a given 

experiment ξ with parameters Θ. The assumption is that the experiment parameters vector 

Θ is not dependent on the models. In perspective, Θ represents the total DOF among the 

data. This relationship can also be defined as a coherence analysis between the models and 

Θ. With a model less than ideal, it obeys the Cauchy-Schwarz inequality and the lost 

information the model sustains is the difference in the entropy measured as defined by the 

Shannon theorem. 

With an experiment ξ not dependent on the model g(t), but both systems satisfy the 

Cauchy-Schwarz inequality the result is a positive number. This brings forward the result 

than while Θ is time dependent and g(t) is assumed a fixed model, the Cauchy-Schwarz 

inequality is not guaranteed to be constant. It is imperative that g(t) is designed or the 

selection of the experiment ratio at the time of origin is a positive number. The Variability 

is an index of the degradation. A decreasing index is a degradation of trust in the static 

model g(t). However, ideally a convergence towards unity is sought. In the cyber-security 

example, priors are considered in issuing a secret and the model expresses in characteristics 

such as encryption bits, algorithms and expiration dates. The degradation of the expiration 

date in that case is computed on constructed experiment data sampled from actual data.  

Finding adequate models g(t) for experimental data is not necessary conclusive or 

achievable. The approach of trust erosion is computed by marginalizing the prior g(t) 
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asymptotically along the exponential growth function at the time of origin t0. For an upper 

bound measure of a degradation, the difference between the distributions for the 

experiment ξ|t0 and the distributions at ξ|t are evaluated. In Bayesian sense, the trust 

degradation is therefore the maximum likelihood (upper bound) of the ratio of the posterior 

over the prior. For the upper boundary conditions, the maximum likelihood is therefore 

evaluated. Both the prior and the posterior are experimentally derived at t0 and time t.  

The outcome is consequently two folds: 1) determine a generalized measure for the 

impact of the deviation and 2) determine a trust degradation system as a dynamic time-

varying process.  

The interaction between the measurement and models can be thought of as the 

resolution of the information uncertainty. The mismatch is in the imparity of the minimal 

system realizations underlying the measurements and models. An outcome of the 

disproportionality in dimensions is categorized by the {k | ¬k} and {¬k | ¬k} sets depending 

on the direction of the imparity.  

The special case from above is that for an ideal model (system), the conservation 

of information exchange with the measurement is lossless.    

The use case of the HUMINT is a segue to cyber-security and therefore extends to 

Cyber Intelligence (CYBINT) and Digital Network Intelligence (DNINT). The 

foundational aspects follow two distinct vectors: First, to illustrate the notion of trust under 

uncertainty, second, to illustrate the notion of degradation of assumptions being 

proportional to time and to the unaccounted (lost) information. The foundation of cyber-

security is based on series of non-ideal statistics crafted to remedy current challenges. 

These statistics have specific models and require specific configurations to function. The 

current cyber-security paradigm will fall short as data holds are information centric and the 

security holds as models. Degradation will also be referred to as the erosion of the expected 

trust in the models given the loss of the divergence between the data and the models.  

Addressed herein is cyber-security in regards to its digital assets where it would 

make sense to think that digital assets have inherent non-ideal models by design. The 

objective is to solve for the expected models and deviations as a dynamic time-varying 

process. Inversely, this demonstrates the aggregate risk factor when the degradation is left 

unchecked. The degradation is computed as the difference of the normalized uncertainty 
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measures between the expected and actual measurements. A degradation index is then 

constructed in the range [0,1].  

Model independent system realization is discussed as the underlying computational 

framework for MES to provide optimal methods.  

Examining cyber-security history, one would conclude it has been an evolutionary 

path. In fact, Internet security had been non-existent in its early days until the consequences 

were substantial and could not be marginalized. There was a time when base 64 encoding 

was the recommended approach. It is arguable that today’s cyber-security surpasses the 

encoded secrets approach of base 64. However, the principle of security challenges remains 

the same but at a different level; still evolutionary, but they are more complex algorithms 

to decode. Either way the approach models have been probabilistic when the system’s risk 

is measured as: 

  

Risk = Likelihood * Impact                        (1) 

 

There are many standards that govern the computation of the risk assessment. The 

likelihood is probabilistic measured through simulations and white hat assessments (e.g., 

third party certifications).    

In general, this example describes a clear outcome with some probability 

distribution and as described, a known threat with known or unknown occurrences. In other 

words, the threat is stated as “the probability to decode a known secret.”  

It is clear that after-the-fact analysis has driven security to model assumptions about 

the threats.  Thus, the modalities of a secure system have been to meet the conditions set 

by the probabilities analyzed from known (and hypothetical) threats.  

The observations point out that cyber-security challenges still exist, and the 

question remains if what has been computed for and set forth in execution is not adequate. 

There should be no surprises since the Risk = Likelihood * Impact is still accepted as a 

positive number; in other words, the Impact is normalized. For example, in the economic 

sense worldwide (e.g. industry-wide) a few targets are sacrificed as long as the risk is still 

below a certain threshold. This is the true status-quo of Internet security. 
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This shortfall will be addressed herein on how to avoid marginalizing systems in 

cyber-security. 

Currently, cyber-security creates solutions that are constantly devised to counter 

threats with complexity (e.g. algorithmic) but are built around existing threat models. These 

threat models do take additional measures into consideration for futuristic enhancements 

but in truth, these assumptions (considerations) are still projections with assumed variances. 

Meanwhile, as more complex algorithms are devised new threats are discovered outside 

the assumed models. After decades of cyber-security failures over the same principles of 

security, one would wonder if the stated evolutionary strategies are still the right ones.   

The unknown-unknown type of problems are addressed herein as they relate to 

cyber-security shortfalls. Though, one could argue that the previous shortfalls are a 

subclass of the unknown-unknown type problem. 

Loosely, the existence of a failure is addressed from an existentialism view. To 

express this further a new analogy will be expressed.  Fundamentally, a threat only exists 

to a system if the system exists in the first place. This notion is known among economics; 

existentialism takes the form of economic terms and existence is some dollar value. Simply 

put, the maximum threat to a $1-dollar investment is $1 whereas the maximum threat to 

$1B is $1B. It can also be understood that the risks are proportional to their underlying 

complexities. Internet security is not that different and has grown very complex on its own, 

but only to the extent of the impact (profit and loss).  

Defining the economics case as a trust under uncertainty, one can realize that the 

market is constantly challenged with its own unknown-unknown. In fact, economic 

recession has occurred around ⅘ of the time for centuries and still no one can predict the 

next one. If a hundred percent secure solution was devised there would be a better payoff 

applying it instead of the methodology of market prediction.   

In perspective, one can argue that the goal is to maximize the ratio of trust 

degradation over its design closer to unity. A distinction between digital assets (e.g., digital 

secret) and physical assets (e.g., rover on Mars) is the capitalization and cost of opportunity. 

While a rover would cost $1B in capitalization and many years to make, digital assets will 

far exceed their value proposition, risks and liabilities included, because of the premise in 

the economics of digitization. Cyber-security in general and CYBINT differ at this level as 
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CYBINT has a substantial upfront capitalization. The premise of this maximization is 

solely dependent on the interpretation of “impact.” Obviously, the meaning of impact 

differs for both use cases. The volatility in the digital asset context dictates the purpose of 

this discussion, which is to model such a ratio in the digital world that is less volatile and 

more physically defined in the analog world.  

The goal is not to devise a new secure system, but rather to assert the foundational 

science of the risk factors for a system attributed to its own growth (e.g., usage). The 

assumption is that the set {¬k | ¬k} grows proportionally with complexity. Assuming the 

underlying complexity growth follows the Solow economic model, the risk R(t) will follow 

a similarly an exponential growth. 

The assumption that the underlying risks are proportional to underlying 

complexities takes the form of an assumed known risk Rt0 at time t0 and unknown deviation 

risks Rd(t). An exposure factor EF(t)  as an integral of all materialized and unmaterialized 

risks (i.e. deviation risks), or 

 

             (2) 

 

Given the complexity growth model, the unknown risk when left unchecked, will 

grow exponentially from t0, or 

 

∗                               (3) 

 

Where x is the growth factor. The exposure risk factor follows as 

 

                           (4) 

 

It is clear that the unaccounted exposure is a monotonically increasing function for 

x > 0. It is notable that most systems rely on (Rt0 t) only for a limited period t0 < t < tmax 

where tmax is the lifespan.  One can further the assertion as the exposure factor, when 

factored back into the system model, reflects a degradation factor to the known 

assumptions.  
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As illustrated in Figure 1 below, the total area grows exponentially on the premise 

of {¬k | ¬k}. Both {k | k} and {k | ¬k} shrink at the same rate of the lack of new knowledge, 

{¬k | ¬k} grows. In layman terms, the cost of ignorance over time is not forgiving.  

 

 

 
Figure 1: { K | K }, { K | ¬K } and { ¬K | ¬K }. One can envisage the boundary problem for the three concepts is 

limited the underlying physical concept. One would need to identify the boundary of the physical context. Reasoning 
under uncertainty is feasible once a model is conceived. 

The growth of {¬k | ¬k} is non-linear, but the assumption made of its growth being 

exponential is fair choice. The choice of the growth factor x is determined from the 

underlying system model and can be independently modeled and evaluated as the 

underpinning economics and infrastructure complexity. Complexity is a foundational 

aspect of measure to many systems including cyber security. There are enough correlations 

to point out a causality at play. The latter assumption makes a big difference on what is 

being optimized. The applications (among others) are numerous. Though, in cyber security 

cases, the focus is on when to upgrade digital assets like secrets (e.g. secret keys or when 

to rekey). This is because the nature of security exposure is no longer a fixed assumption 

but a non-linear degradation as a process of complexity and time.  

The concept of {k | k}, {k | ¬k} and {¬k | ¬k} is a very challenging concept to 

represent mathematically as one can model the { k | k} framework in set theory and model 

{k | ¬k} in the sense of probability theory. On the other hand, {¬k | ¬k} is boundless and 

unknown by definition. This problem relates to the modality of an inverse problem type 

constrained by its boundary problem.  

At this level the systems’ components {k | k} and {k | ¬k} have been exposed as a 

deterministic and stationary Gaussian process. The input of the system is not deterministic 
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nor a stationary Gaussian process. The inverse problem is formulated such that to identify 

the impact of {¬k | ¬k} on {k | k} and {k | ¬k} at least as a ratio. As {¬k | ¬k} expands 

exponentially, {k | k} and {k | ¬k} decline in the same order of scale. The ratio is thus a 

degradation index. One goal is to solve for the magnitude of the uncertainty (deviations) 

and not to search for predictability (building models). The magnitude of the uncertainty is 

entropic and will be addressed with these mathematical measures.  

Sampling in the {¬k | ¬k} for deviations is a stochastic process for the points on a 

multidimensional function whose integral exhibits exponential behavior. But more 

precisely, the delta growth of the uncertainty is taken at an origin with a reference point in 

time t0 of the system with prior as Rt0 (i.e., {k | k} {k | ¬k} sets). 

Optimally sampling in the {¬k | ¬k} space coincides with the MES theory thus 

maximizing the information and minimizing the entropy for non-stationary Gaussian 

processes. This discovery leads to two possible inversion problem perspectives as crossing 

the same boundary conditions either from left to right or from right to left and in terms of 

use cases. As illustrated in Figure 2 below, for the use cases where a deterministic system 

(i.e., stationary process) intersects with a non-stationary process, interpolation occurs for 

the area between the two intersecting boundaries, rendered deterministic and augmented to 

{k |¬k} models. Moreover, for the use cases where a non-stationary process intersects a 

stationary process system, extrapolation occurs based on the intersecting non-stationary 

process boundary curvature. Extrapolation for the rest of the non-stationary process is 

determined from the origin which is defined by the intersecting boundary, curvatures and 

an assumed growth rate of the non-stationary process.   

    

 
Figure 2: The non-stationary process is illustrated by the circle. The extrapolation attempts to compute the 

area/circumference dimensions based on the intersecting arc. The inverse problem is a boundary condition search for 
the intersection between stationary and non-stationary processes. A boundary can be crossed either from the left or 

from the right between {K |¬K} and {¬K |¬K}. An identification minimization search (convergence) can begin once 
the boundary conditions are exposed.  Maximum entropy solves for the stationary process boundary. 
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Gaming theory makes sense in this context. For a conceptual “Red” and “Blue” 

teams division, cyber-security becomes a subset use case. In terms of intersection, “Blue” 

is the deterministic system at hand, and “Red” is the unknown unknown group.  

Most gaming takes root from warfare. Warfare is the oldest school ever known to 

the human civilization and precedes literacy. The premise has been touched upon as Sun 

Tzu states in The Art of War, “To know your Enemy, you must become your Enemy.” 

Fundamentally, cyber warfare is not much different in principle. One example is when 

digital secret keys are changed every now and then, which mimics an old strategy of 

moving the residency of a king every now and then.  

The value proposition herein is analogous to the analysis of the ingress and egress 

behaviors made at the entrance of a city. Historically, travelers were denied pass-through 

when the traveler ingress exceeded its egress. This made the generals evaluate the risk ratio 

at the first travelers count, and later, at the maximum volume and capacity of their 

transports (reflecting disguised materials), against an existing defense system. The formula 

was simple: assess the worst-case scenario given the ingress minus egress capacity. 

Optimal reasoning mimicked the maximum entropy assessment of a threat if all travelers 

and all their transports constitute a threat. Inversely, reasoning with confidence intervals, 

or less than the maximum, is a limited system. An example in the prior model for the threat 

above is limiting the threat to men for an age range. Cyber-security models today mimics 

the stated assumptions as sets limits as well as the remedy to deter threats. However, they 

fall short as digital concealments has been a successful work around. 

(As a result, cities were built as hub and worked to maximize the control over the 

transport characteristics.) 

The maximum likelihood (paranoid) approach has both advantages and 

disadvantages. The maximum likelihood approach penalizes the optimization at some cost 

(impact). With the latter example, the impact may be represented as a trade-off analysis 

between trading economic loss against safety. 

The objective in the analogy of the ingress and egress analysis over known physical 

quantities, such as volume and weight over time, serves the purpose of distinguishing the 

separation of the quantitative analysis (the data) from its qualitative counterpart (the 
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models). The qualitative analyses from the analogy are numerous such as safety threats, 

illegal trafficking, etc. The physical measurements do not change.     

Not surprisingly, this methodology is still an optimal approach used in modern 

warfare, social and economic behaviors. Military checkpoints will report the ingress and 

egress quantitative measures regardless of the qualitative assessment to command and 

control. In unperfected warfare methods decisions are qualitatively made at checkpoints. 

A risk assessment is not limited to the mean, variances, or the maximum confidence 

region of previous conflicts but a differential sensitivity analysis. Sensitivity analysis over 

quantitative data is described to measure an information index.  

Using the former equations, the risk Rt0 is a quantitative measure at time t0. The 

exposure risk factor Erf at time tN is an integral risk carried forward because it is the 

maximum exposure. The exposure risk factor considers the risk at a future moment tN and 

factors in the former risks as persistent intelligence (e.g., informers in the context of 

warfare). 

The digital world is not different from the physical one, and digital Input/Output 

(I/O) equates to the ingress and egress in physical dimensions.     

The techniques described herein build formally on this principle. The clear 

distinction, as in many analytical threat systems, is the premise that there is no knowledge 

about the threat, the enemy, or the “Red” team. This applies to every aspect underlying the 

{¬k |¬k} assumptions. However, the assumption that the system boundary is measurable 

(the input and output interfaces are known) is a fair one. 

There are two main topics concerning boundary discovery and how sampling 

experiments can be used to track dynamic system boundaries. The first is how to establish 

formal representations in experimental sampling and selecting the sampling points. The 

second is how to examine them, conduct the actual experiments, and collect the data. 

Formal representations such as D-optimality designs are particularly useful when classical 

designs do not apply in nonlinear systems. The optimality criterion used in generating D-

optimal designs maximizes the determinant of the information matrix.  

In complex cases, in both non-linear and non-normal estimation designs, when the 

posterior distribution cannot be modeled in a design criterion the estimation is not possible. 
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The solution described herein relies on asymptotic approximations thus the sense of 

direction becomes the basis of the posterior estimation of the design. 

Sebastiani and Wynn have introduced MES for estimating similar design problems, 

see [5]. Using this approach, if the entropy of the sampling distribution is not functionally 

dependent on the experiment, then an experiment minimizing the expected posterior 

entropy can be found. This experiment is found by maximizing the marginal entropy of the 

data. 

The techniques described herein may use MES as the evaluation criterion where 

the most informative design with respect to the parameters is of interest. The design builds 

on the D-optimality design for a continuous analysis. The end result is its combinatorial 

(regression) optimization over the continuous process. 

In the context of building the experiment, different criteria exist that match different 

goals. Most supervised learning algorithms focus on A-optimality designs where a strict 

sense of models exist a priori and therefore the goal is to minimize the variances. In 

unsupervised learning, models are not known a priori and one is left to rely on said 

asymptotic approximations.  

The entropy criterion is used for the purpose of choosing enough experiments ξ1..k 

that collectively maximize the amount of information about Θ, the model parameters, when 

intersecting {k |¬k} or {k |¬k} with {¬k |¬k}. It will be shown later that the choice of Θ is 

a frequency spectrum. The experiments ξ1..k will be chosen as quantitative measures that 

parallel underlying physical quantities such as I/O in digital systems. 

Suppose one experiment ξ enables measuring the intersecting boundary. The 

outcome of the experiment is a random N vector y, and the subset Θ = θ is assumed to be 

the intersecting boundary parameters where y has a known distribution with density p(y | 

θ, ξ). The parameter vector Θ has a prior density p(θ) that is not dependent on the 

experiment ξ and therefore θ is quantitative. In system theory, the experiment takes the role 

of an observer. The parameter Θ models the data and its dimensionality is in the order of 

the complexity of the data to preserve the maximum information.  

The problem is to obtain the maximum amount of information about Θ as the 

negative Shannon entropy.  For a sample measurement vector ᴦ, entropy is defined as the 

negative measure of information, 
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, , ,              (5) 

 

Working with {¬k |¬k}, it is assumed that an unknown vector ᴦ can be decomposed 

as (ᴦs : ᴦⓢ), where s represents the sampled set for N points on a boundary. The criterion 

identity decomposition for a sampled and unsampled random vector is 

 

∗ ⓢ|           (6) 

 

Sebastiani and Wynn rewrote the entropy decomposition for ᴦ = (Θ, y), see [5], 

such that 

 

, |              (7) 

|  

 

These results may appear in several forms, as seen in [10]. 

For a given Ent(Θ, y), minimizing  Ey {Ent(Θ| y, ξ} is equivalent to maximizing 

Ent(y), or the marginal entropy of the data.  

The theoretical Bayesian information optimization consists of the experiment that 

minimizes the expected posterior (Shannon) entropy of Θ. This method applies the MES 

principle because of how the experiment optimally minimizes the expected posterior 

entropy of Θ. Therefore, the experiment which maximizes the entropy of the marginal 

distribution of y will be most informative for Θ.  

The decomposition of the entropy with a minimization term and maximization term 

is in fact a divide and conquer strategy. In this strategy information is learned, extracted 

from the measurements and isolated from the ongoing remaining information. This is 

critical for time series regression experiments where deviation in the entropy is a measured 

quantity.   

To apply the MES principle, a regression type experiment is sought for time series 

in order to sample models with additive deviations x and error variances. The additive 
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deviations and error variances are not dependent on the experiment ξ. The regression may 

be rewritten as 

 

| , ,                            (8) 

 

f is a function of ξ and θ, conditional on Θ = θ, and x + σε are the vectors of 

independently distributed deviations and errors. The vectors x + σε are also independent of 

ξ. The vectors σε will be considered noise and are distinct from the deviation x. N is a 

control variable for the number of data points for the regression type and for a given period 

of time . Given θ and y(ξ, θ) are known (fixed), the following equation can be written. 

 

| , | ,                           (9) 

  

A key aspect is that f(ξ, θ) can be any function of ξ and θ and applies for nonlinear 

regression frameworks. Ent(x|ξ, θ) would be the most informative information.  

For the assumption that the system is inherently nonlinear but follows an 

asymptotic approximation, Θ is assumed to have a continuous prior and that the sampling 

and prior density of θ is differentiable near the MES of θ. Examining the curvature of the 

posterior dispersion inverse leads to the Fisher information matrix 

 

, | 	
δ ℓ ,

 

 

.                                     (10) 

 

ℓ(θ, y) is the negative log-likelihood function and D is its derivative matrix. The 

posterior can then be approximated as θ,y|ξ  ~  N(θ, I-1). Chaloner and Verdinelli prove, 

see [12], that the expectation may be switched to the prior distribution of Θ and the 

expected information gain from the experiment becomes, when minimized, D-optimal 

(asymptotic) as follows. 
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	|	 ,                (11) 

 

For the maximum information and approximate for the marginal density, a 

smoothing local constraint may be enforced on variations of the parameters. Σ-1(θi, θj) is 

designed as an isotropic Gaussian matrix of an arbitrary dispersion control size (e.g., 

typical size 5x5 Gaussian distribution) where σ is a dispersion control set. Many dispersion 

templates can be used for σ. As the range of Θ values becomes large, the smoothing 

function will propagate and increase the upper bound of the MES design.   

The previous Fisher matrix may be replaced with an updated inverse covariance as 

shown below. A is the inverse covariance matrix, taking the form of a Hessian matrix, and 

b is the gradient of the likelihood function and is therefore the quantum measure of the 

information learned.  

 

.                                  (12) 

 

 

For a regression, Θ is updated with A as the inverse covariance and b as the update 

vector. The information gain becomes Ey { - log det A-1  } and b is the model update change.  

The relationship of the derivatives into the estimated linearized regression becomes 

 

ŷ | ,                 (13) 

 

The outcome of the experiment may be chosen for the random n-vector y to be a 

transformed vector Y, a Discrete Fourier Transform. Given ∑k | Y |2 = 1, then θ is 

considered a density function. Let θ =  | Y |2 be the spectral density outcome. The entropic 

uncertainty expressed in terms of the deviation of the Shannon entropy presents the 

analogous form for y as 

 

| , ∑ 	   (14) 
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Θ may be used as the parameter vector of all θ for {y, t → ∞}. Nonetheless, the 

equation above needs to be optimized for regression purposes.   

For complex communication systems g(t), the sense of time becomes artificial 

when it crosses the digital boundary. This means that time series analyses need to be 

analyzed for their maximum information content on the true physical boundaries before 

any loss of information occurs. That is, the digital sampling of the information needs to be 

measured in the absolute sense. In particular, non-real-time systems suffer losses because 

of the lack of absolute time and because their ability to reliably model the information at 

their interfaces becomes uncertain.   

Neglect occurs when digital systems interact with the real word at the boundary of 

the underlying physical system. The deficiency occurs when the used information data is 

less than the maximum information index. A good example of deficiency occurs when 

there is variability in the rate of data arrivals. Timeouts are used as workarounds in systems 

but do not account for the variability and information is therefore lost to what is north-

bound to the interface.  

For illustrative purposes, the Open Systems Interconnection (OSI) model 

segmentation is discussed herein. The OSI model segmentation will show the derivation of 

the analytical transformation of time into an artificial one (other boundary types can also 

be found in other I/O driven systems). In general, I/O is subject to the communication 

theory where systems can be decomposed at their boundaries through analog to digital 

conversion or vice versa.   

Suppose an experiment ξ is constructed and data collected. First, a received signal 

ya(t) on an interface may be considered. It is demonstrated, see [7], that the analog signal 

ya(t) may be written as 

 

,                (15) 

 

where y(t) are the observed sequences, fa(θ, t) is the expected trend function, and 

x(t) and (t) are the independent random deviations from the expected  function of f(θ, t). 

The decomposition may be extended into a digital counterpart which may be written as 
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,                           (16) 

 

This equation assumes that a a(t) is limited to analog signals reflecting hardware 

noise and vanishes in digital observations. The signal y(t) is defined as a stochastic process 

with a mean function fd(θ, t) and a stochastic deviation x(t). The behavior of x(t) is analyzed 

herein and x is not discarded as noise.  

Optimal parametric representation may be used for the estimation of the relevant 

statistical components and the estimates of the coefficients may be made using parametric 

methods. Furthermore, to maximize the analysis over a flexible time range, the Fourier 

function may be used as a basis function. Comparatively, Gebraeel and al. analyze their 

signals non-parametrically, but they similarly assume a localized smooth curvature model 

to achieve the surface continuity [7]. The curvature is considered to be smooth and 

continuous even though the nature of data contains sharp changes for neighboring 

characteristics. For that purpose, Fourier is the method to use for modeling. Therefore, 

taking the Fourier transform over a period  for a total of N samples yields 

 

                             (17) 

 

θ is in the frequency domain and Y and X are the corresponding discrete Fourier 

transforms for size N.   

The choice of using the OSI model is intentional as it points out that the main 

innovation in the Internet is artificial time. Artificial time occurs with the reordering of 

data arrival frames on a new sequence such as demultiplexing. This novelty renders the 

communication channel asynchronous and as such, a manifestation of a frame (i.e., packet) 

can arrive any time and out of order.  

In an OSI model, which includes layer 1 and 2, layer 1 is analytical in the spectrum.  

This means that layer 2 should also be treated analytically.  

Comparatively, serial communication, such as in a Controller Area Network (CAN 

bus), is synchronous and deterministic. The time shuffling in OSI renders time unreliable 

in a deterministic sense. Indeed, the nature of packet reordering renders the element of time 
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artificial and thus the data set cannot be integrated over ∞ if the time reordering is not 

accounted for.   

A major outcome of the derived arbitrary sense of time is the need to analyze the 

newly created data-time and thus their frequency spectrums. With demultiplexing, it is 

often expected that the derived spectrums will be different from the true input to 

accommodate for the allowed data reordering among the data sets. The newly created 

spectrums are artifacts of demultiplexing. Demultiplexing observations are linear in their 

spectrum mappings. This spectrum assumption also holds inversely on a multiplexing 

process.  

The focus is on the constant that is pointed out when applying Shannon’s theorem 

on the information content carried by the packet reordering. It can be deduced that any 

transformation scheme cannot increase the total information exchange but can only 

decrease or equate it. Measuring this constant and its variability over time is essential in 

determining the maximum information that occurs at the interface.   

To access the analytical features of OSI layer 1 across the boundary the linearity 

aspect of the Fourier transform must be recalled. The aspect of linearity is the equivalence 

key of the Fourier of layer 1 with the Fourier Transforms rendered over synthetic channels 

created at layer 2. Synthetic channels are the logical experiments ξ and are independent of 

the data.  Demultiplexing analysis, such as accounting for Domain Name System (DNS) 

traffic independently from the rest of a packet flow, is an example of an experiment as one 

channel. 

For the proposed digital data, the linearly reversible nature of discrete Fourier 

transforms enables the desired analytical function to occur over an arbitrary time index.  

For completeness in the introspection of the data, the signal phases must be considered.  

Digitization fails to account for the known impact signal phases have and they are therefore 

considered the lossy aspect of the digitization, not the analytical functions. 

To assert a sense of continuity over the data signals, the analytical spectral function 

Sd is done in terms of the discrete Fourier transform underlying the frequencies of the data 

points in the sequence y(t).  

In order to follow numerical solution spectral methods for the partial differential 

equations required in the Fisher Information Matrix (inverse covariance), the 
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transformations must use cosines. The ipso facto uses of cosines in the transformations lead 

to an analytical spectral density function. Furthermore, for differential equations the 

cosines express a particular choice of boundary conditions. Discrete Cosine Transform 

(DCT) is a lossless transformation that renders the parameters not dependent.  Digital data 

points are analytically computed over 

 

∑ 	 		 	 0,1, … . 1       (18)                                                 

 

The data set in this equation represents the arrival of layer 2 over an IP network. 

The quasi-physical quantity parameters modeled in the table below are the differential 

times between real time and their corresponding offsets, or the delays. Lengths are also 

valid dimensions. In general, one can devise a model for the data sets for I/O such as 

physical entities derived from the frames over serialization transmissions or other 

transmission/reception. This analogy extends to numerous observation models. 

The table below summarizes common data sets calculated for yd and their reflection 

of physical world measurements: 

Data Sets and Their Physical Measurements 

Yd | ξ Variables Original Spectrum Channels 

Dimension(s) e.g Bandwidth Size Size 

Absolute(s) e.g Time Differential  

Relativity(ies) e.g. Offsets  

OSI model suggests the 

option to reshuffle the 

measurements ordering for 

layer 3. 

Type(s) 
E.g. Channels and 

mux/demux 
 

OSI model suggests new 

virtual channels based on 

unique identifications (IP, 

protocol, ports). 
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At this stage, it is assumed that the spectrum demultiplexing for digital systems into 

their corresponding channels has been addressed. The consideration made here is that the 

N samples were collected in the relative time period τ. The notation of y(t-τ) may be 

expanded to yi(t-τ) because the representation of data sets from an arbitrary channel i, 

representing the ith experiment ξi for N data sets, matches the artificial time period τ. Yi(f) 

is the DCT and SY is the spectral density function. For simplicity Si is referred to as S(i, k), 

a vector of k elements for a channel i. 

Suppose the system in question is a non-linear multiple-input multiple-output 

(MIMO), a bounded-input bounded-output (BIBO) and a non-continuous discrete system. 

Meaning that if |y(t)| ≤ N for all values of t when the input is a finite-variance random 

process, the system is being deterministic by design and is thus a Wide-Sense Stationary 

(WSS).  The input is a WSS process as the expected input for all t is 

 

,  

,  

,         (19) 

 

where ξi(t) is the response of the interface as an experiment for channel i. In fact, 

{ yi (t) } is also a WSS process like { y0 (t) }. The corresponding relative deviations can 

also be written: 

 

,                         (20) 

 

and through the linearity aspect of the Fourier transform, the following equation 

may be written: 

 

                          (21) 

 

Given equation 20, the deviation of xi(t) appears to be the most informative 

component in the isolated stochastic process. For completeness, accounting for any 
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discrepancy in the de-sequencing between y0(t) and yi(t), the vector y0(t) may be asserted 

as 

 

∑ 	 																																							(22) 

 

0 is the zeroth channel or the original channel in a demultiplexed system for a total 

of (i+1) channels.  Let S̄(f) = || S(f) || be the normalized outcome, one can write the partial 

normalization as 

 

∗ | |                  (23) 
 

The magnitude of the spectral density is denoted as | S |. For practical purposes, S(f) 

has been quantized to a smaller size M, being as positive number ≤ N. 

Since each channel may represent an independent experiment or SDOF, the modal 

analysis on the data is a possible response of multi-output data. In such case, the modal 

analysis will generate the realization of a nonlinear system F being sampled in the period 

. Using the frequency response with multi-output data a linearized transfer function may 

be written as 

 

	

	
																																								(24) 

 

Where Fpartial is the partial spectral power distribution matrix.  

When extending the integral of the auto-spectral and cross-spectral density function 

of a signal to the covariance notation of the random variables, the following relationships 

are established: the variance is σ2  =  ∑I Si, the covariance is  σ2
ij

  =   ∑ij Sij  and N is the 

number of frequencies. 

The way to consider the variability in the transfer of the power spectrum into the 

multi-output system, in relation to the variance and covariance, is to reflect the relationship 

through the cross correlations between channels.  
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The partial spectral power distribution matrix is one modality underlining the power 

transfer that is not descriptive. On the other hand, the variability analysis in spectral 

signatures leads to the measure of coherence. This is essential to measuring the 

transferability of the energy and therefore measuring the effectiveness of the experiments.  

The spectral coherence is used to examine the relation between data sets. This is 

essential to assess if the designed experiments have drawn enough data as it estimates the 

power transfer between input and output of the demultiplexing process. The system is 

lossless as the signals are ergodic and the power transfer is linear. The causality between 

the input and output is therefore calculated. The coherence, being the magnitude-squared 

coherence between the deviations x0(t) and xi(t), is a real-valued function and is defined as: 

 

C ∑ 	 |S f | ∗ S f ∗ ∑ 	 S f              (25) 

and for a corresponding transfer matrix  

F
	

	
																(26) 

where S0(f) and Si(f) are the auto-spectral densities of y0 and yi, respectively, and 

Sij(f) is the cross-spectral density between yi and yj. Given the restrictions noted above 

concerning ergodicity and linearity, the coherence function estimates the extent to which 

yi(t) is composed from yj(t). Fij follows the same Fisher Information Matrix as described 

above.   

The coherence will thus always satisfy 0 ≤ Cy ≤ 1, or an Identity Matrix. For an 

ideal system with input y0(t) and multiple outputs yi(t), the coherence will be equal to 1 or 

the identity. In cases where the ideal linearized system assumptions are insufficient, the 

Cauchy-Schwarz inequality guarantees a value of Cy ≤ 1. 

The deviation of the realization of the system in the physical world from its ideal 

counterpart culminates to the unaccounted spectrum and loss of information when 

integrated over time. While these deviations are an inherent part of the system life cycle, 

few known approaches are sufficient to model the deviations of the complete system 

dynamics.  

25

Defensive Publications Series, Art. 1405 [2018]

https://www.tdcommons.org/dpubs_series/1405



 25 5670 

Tracking the coherence is an element of understanding that is lost for complex 

systems. The information is lost because it is tracking the derivative functions of the change 

from the expected values for non-stationary and non-linear systems. 

If the coherence Cy is not one but is greater than zero it is an indication that several 

different things could be happening.  It could be that strong deviations are entering the data, 

that the assumed function relating yi(t) and yj(t) is highly nonlinear at that moment, or that 

boundary discontinuity is being produced by yi(t) due to input yj(t) as well as other inputs 

from different time segments. If the coherence is equal to zero, it is an indication that yi(t) 

and yj(t) are completely unrelated given the constraints mentioned above.  

The coherence therefore represents the fractional part of the output signal power 

that is produced by the input at that frequency. The quantity (1−C) may be viewed as an 

estimate of the output that is not contributed by the input at a particular frequency. The 

quantity (I-FY) is used in a matrix notation where I is the identity matrix. This leads to the 

definition of the coherence output spectrum CY. ∑i Si(f), which provides a spectral 

quantification of the output power that is uncorrelated with other inputs and is therefore a 

useful quantity.  

With the parameters being differentiable, the optimization of the upper bound is 

reached with lower curvature dispersion in the Fisher Information matrix. In reality, 

achieving a system independent realization will be different from the ideal world. For  > 

0, AAT is a design matrix that is asymptotically approximate as described by Brincker et 

al [8]. A way to further smooth the dispersion in the Fisher Information is by using the 

quantization effect on the parameters instead of putting them into lesser dimensions. This 

also results in smaller computational complexity.  

For a recursive decomposition, the variance associated with the deviation SX, s of an 

unknown true measure SY, s is given by  

 

Q | E S , ∗ S ,                         (27) 

 

and evaluated recursively with SY, s|s-1 

Q | E S , θ | S , θ |         (28) 
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For a system transfer function F evaluated at sample s, the influence of the deviation 

on the expected value is solved for, minimizing the variances, and the following equation 

is obtained: 

 

w | P | F A P | A Q |        (29) 

 

Ps|s-1 is the prior distribution and ws is the weighted gain from the deviation. The 

posterior θs estimates and covariance are thus correspondingly updated to 

 

θ f θ w θ S  

P | P | w F Q |                         (30) 

  

The impact of the deviation gain ws and the parameters θs are outcomes and come 

from tracking the covariance Ps. The entropy of the parameters and the Fisher matrix are 

also two key measures.  

One principle discussed herein is tied to Shannon’s Information Theory in that {0, 

1} cannot be created without an analog counterpart. In that case, cyber-security would need 

to consider unexpected data a threat. In the very least, unmodeled data should be assessed 

for what it is worth in information value. Comparatively in the digital world, the trend has 

been that unexpected and unprocessed data is discarded in favor of the event that arises. 

Digital forensic tools have been a proposed remedy but are post process in most cases.  

Considering when data is collected in a continuous manner, the variability in the 

outcome may induce deviations from and expected trend and yet but both, deviation and 

expected trends, are new measures being context-independent from the actual data. 

Deviations are exposed with differential methods. For example, if a measured result is 

correctly predicted, the a priori entropy of the result is small relative to that expected. The 

only information at hand, is that it is predictable at that moment. On the other hand, when 

the deviations become substantially evident, the amount of new information is carried to 

the extent of the deviations.  

To analyze a diverse context-independent data set, one may seek to measure the 

information index rather than attempting to understand the data. This approach takes a 
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direct measure of the maximum information per bit. Roughly speaking, when applying 

Shannon’s theorem to the information content carried by the deviation, one can deduce that 

any transformation scheme cannot, on average, have more than one bit of information per 

bit of deviation. This means that any value less than one bit of information per bit of 

deviation can be attained. The entropy of a deviation per bit multiplied by the length of that 

deviation is a measure of how much total information the deviation contains. Therefore, 

the maximum amount of information is calculated as the entropy of all the deviations. 

Thus, the entropy becomes a measure of unpredictability, or equivalently, of its 

average information content. Considering the normalized spectrum S̄i, when the deviations 

are normalized and constrained the following equation is obtained 

∑ 	 S 1                          (31) 

 

Summing all j deviations in channel i, the following equation can be written 

 

P |S |                                  (32) 

 

to be considered as a discrete probability mass function, with an associated 

probability mass function constructed from the transformed variable xi. Shannon’s entropy 

Η for the spectrum S̄i and probability mass function P(S̄Xi) can be written as 

 

H S ∑ 	 P S log P S                   (33) 

 

In cryptography, a “key” is information that determines the output of a 

cryptographic algorithm. These algorithms are typically difficult to protect and as such are 

often assumed to be known. A key is byproduct of a cryptographic algorithm, is easier to 

change if compromised. As such, the security of a system usually relies on the security of 

the key. The risk is therefore computed based on the prior of being able to compromise the 

key with certain confidence.   

Maintenance of the key carries the process of changing the keys is deterministically 

defined where the maintenance follows a fixed time period. In parallel, security products 

have followed an evolutionary strategy of patching and therefore the system overall 
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weakens over time. Failure modes become the opportune times when the weaknesses of 

the security systems put in place align. For example, double factor authentication may 

appear to increase the overall authentication but it may be hiding the weakness of the keys. 

In other words, the keys may have already been compromised but because the complete 

authentication process is still effective the compromise is unknown.   

These secrets, used in special or generic purpose connected networks, can be 

expected to degrade and fail as a function of time and usage. The convention of secrets 

being replaced or upgraded periodically, in a fairly arbitrary fashion, is a backdoor to the 

new layers of security solutions. Furthermore, digital asset protection in security revolves 

around designing very complex secrets and it therefore stops short in deterring failure 

modality beyond the threat of deciphering the secrets.  

Secrets are originally designed with a difficulty level that reflects an index of 

randomness and complexity. With the diverse types of configurations in security setups, it 

is challenging to quantify an index strength for original setups to start with. Typical usage 

and conditions on the difficulties in many cyber-security instantiations are reflected in the 

secrets expiration date. Expiration dates are derived analytically from the secrets known 

states in certain usage conditions.    

Suppose a secret is replaced every x days but is used enough in those x days that 

the secret has been compromised for x - T days. The compromise period for the secret is 

therefore T days. If a compromise does occur it does not necessarily mean that the secret 

was deciphered; in some compromised security cases the secrets are hijacked. If the key 

was a private key, it could be used to create others keys (i.e. symmetric keys) and perform 

certain illicit transactions without the need to decipher the secret.    

The information entropy refers to a dynamic value that is independent of the 

underlying keys or digital assets. It reflects new information certainties about the assets as 

erosion factors.  In MES, these information certainties are density functions computed from 

the marginal distributions on secrets usage. For the compromise mentioned above with the 

compromise period of T days, the registered trust score of the key will have degraded 

differently than expected. Decisions are therefore made based on the tolerance of the 

degradation.  
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A review on how experiments and channels are constructed from the materials and 

methods section for the OSI framework is necessary. Channels are constructed with 

parameter vectors about the network protocol, packet payload size, time delays among 

network packets, DNS answer vector, and another vector for errors, etc. 

If one needs to place digital watchdog experiments on devices because observers 

are constantly updating models on ingress and egress traffic, it would be a trivial problem 

if the sentries are only knowledgeable about the traffic a priori. Suppose these digital 

watchdogs are placed as observers on an Ethernet layer 2 network. These watchdogs are 

designed to process layer 2 packets for IP sources, destinations, protocols, packets size, 

time delays, errors, drop packets, repeat packets, etc. Furthermore, suppose these 

watchdogs can produce the indices about the deviations as explained in previous sections. 

The watchdog entropy indices H(t) therefore indicate the quality of the coherence measure, 

the system entropy of the models Θ degradation over time, the deviation entropy of the 

normalized covariance w update, and the update entropy of b. This means that the 

watchdogs are bounded to the scope of the sampling vector.       

 Whether the end example is a device such a switch, router or any electronic device; 

the calculation to generate the differential entropy H(t) reflects the degradation index, use, 

and span of the device.  

When the scope of the watchdog experiment is coherent with the data a threat could 

build its own independent analysis. The final degradation, or the Degradation Factor (DF), 

may be computed as a function of the entropy degradation against the entropy of the 

likelihood distribution of the device behavior.  

Knowledge about the device manufacturing would become imperative if measured 

in universal units, such as entropy, and would create a generalization set of dimensions, 

such as expiration dates. For example, if the device strength is about a secret, the DF is 

used against the a priori entropy of the strength. For clarification, entropy is also used in 

key cryptography as the measure of the randomness. A degradation can therefore be done 

as a direct multiplication. In general, other parameters that govern the keys are also 

considered in quantitative fashion. 

Cyber-security enterprises will immediately benefit from these techniques and can 

extend to compliance or audit datasets, cyber datasets, and network management or 
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assurance dataset use cases. These watchdogs may be distributed to run efficiently on 

endpoints such as APs, edge routers, IoT devices, etc. These endpoints may observe 

communications in the network or the application layer. Either way, a DF factor is reported 

on the device telemetry to a data center.   

These techniques may be applied to all layers of the OSI stack that utilize keys for 

session or application authentication of communication protections (e.g., encryption). The 

extensibility of these methods in the Digital world reaches beyond the network. For 

example, if a secret protects an application, as opposed to a network, messages such as 

database access and password systems pertaining to that application may be observed.  

A user password is one type of private key where a typical user is familiar with the 

strength during the creation process. While degradation in digital assets covers a diverse 

range of assets, login passwords substantially degrade with little oversight. The impact of 

these secret degradations has grown substantially in the consumer world. Systematically, 

the applicability from personal computers, Internet of Things (IoT) devices, mobile devices, 

to online accounts in the cloud follow suit. In these use cases, the physical or logical model 

vectorizations are evaluated as density functions. These functions extend to other forms of 

I/O such as keyboard I/O and password database access I/O (e.g., keychain databases). 

In the paradigm of MES, information entropy may be aggregated across similar 

systems. In the case of a host and multiple physical interfaces, it is assumed that each 

localized entropy is calculated for each device and channel in network switches, routers or 

simply IoT devices. Comparative analysis is constructed on each individual component 

and therefore differentiates the accentuating usage. The advantage of using Shannon’s 

entropy for the information index is that because it is linear, basic linear algebra over 

subsystems and systems on a large network is allowable. One can therefore devise a sharing 

mechanism (i.e., over the network) and cause an individual device to potentially have its 

entropy aggregate at a global scale.  

For large scale system distributions, individual and class degradation factors are 

analyzed with basic theoretical graph frameworks for decisions. An example is a Naïve 

Bayes graph measuring the propagation of the degradation over the network. This 

phenomenon is extremely useful when certain behaviors need to be isolated and 

investigated, also known as real time forensics. There are numerous forensic approaches 
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that allude to reinforcement with the appropriate policies in the control plane. The end 

result is an isolation of the systems and devices until the scores are restored to the expected 

level.   

Productization of the proposed approach using MES in an environment can be 

achieved either locally or remotely on the device or system in question depending on 

telemetry data. The weakness of the analysis from telemetry is that it fails the Turing test 

since there is always a question on the authenticity of the telemetry itself. In fact, a 

computed system score has the authenticity and complexity of a ledger when computed in 

situ. 

Many software-based techniques develop probabilistic models of the validity or 

security of a private or public network. They may employ machine learning over network 

telemetry and big data in order to indicate whether the actual data can compromise a target 

system. These techniques for detecting threats may involve using supervised learning to 

technique and pattern match data for certain known goals. Unsupervised learning has also 

been used for classification and identification of new dimensions.  

This is close in principle to unsupervised learning only when the new classified 

dimensions are assessed in their statistical meaningfulness and computed by the unknown. 

Not many embedded solution and runtime approaches proactively track DFs. 

Typical architectural environments in enterprises and service provider environments would 

be similar to the Fair Isaac Score (FICO score) tailored for security assessment on device 

level IoT switches and gateways. FICO scores have been instrumental in financial security. 

Historically, the principles in security have been to exclusively rely on inputs. 

These techniques have evolved from supervised learning to unsupervised learning. This 

leads to classification and pattern encoding and/or inverse covariance models. In many 

situations, these methods require searching through multiple terabytes of data.  

The originating problem in security is whether or not the calculation of the risk for 

a secret is compromised. This problem is a multivariate in which the solution space is not 

known a priori. That is the nature, type, and approach of possible attacks are not known a 

priori. Unsupervised learning intends to address this kind of problem. Nonetheless, modern 

reinforcement learning has shown its capability in handling unsupervised auxiliary input 
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without biasing the base models learnt by the engine while allowing for identifying outlier 

situations. 

The entropy computation leverages the statistical distribution and shaping from the 

smoothed discrete Fourier transform in order to increase the accuracy and intelligence of 

scoring the risk and/or threat associated with secrets. This mathematical approach of 

computational scores being the output of the logic running on the platform may improve 

the accuracy of the learning supervised system running, for example, a theoretical 

aggregate decision in the cloud.   

Accordingly, the proposed system can also be embedded into unsupervised learning 

for digital asset usage and degradation in a system or a network. Secret analytic models are 

applied to control plane Software Defined Networking (SDN) for analytic model 

exchanges, known as orchestration. 

This may apply to various IoT edge use cases such as connected vehicle energy or 

utilities, oil and gas, and manufacturing. Embedded binaries may be built for edge devices, 

such as connected grid routers and integrated services routers, that perform assurance 

monitoring and local anomaly detection. 

Tampering of far edge communication systems and compute devices is therefore 

preventable. Furthermore, avoiding being tampered by the far edge becomes also feasible. 

This may apply in various use cases, such as in surveillance, transportation and asset 

tracking for military and civil use. 

The techniques described herein provide embedded endpoint self-protection, which 

leads to sustainable approaches for long running periods over multiple years. The software 

may run in the embedded environment, container, Operating System (OS), etc. to avoid the 

heavy investment of big data analytics in the cloud. The runtime may relate to conducting 

the learning and security threat as a measured part of the exposure risk at the edge. 

The analytics are based on Information Theory. In general, the more certainty or 

data, the lower the entropy. In the real world, behavior is rarely random and patterns are 

evaluated for what they are. Patterns lead to certainty and certainty reflects a lower entropy.  

The amount of information collected by simply accessing a secret is measured. Interfaces 

may be used to measure such information about access as reflected in an entropy index.  
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Trust erosion is nothing more than the ratio of the impact, both perceived and 

hypothetical, of the unknown over what is known. While there is no clue whatsoever about 

the unknown, the impact is estimated to follow an exponential growth over time. Therefore, 

the known will decline in the same order of scale. The break-even is reached when learning 

occurs fast enough to catch up with the rate of the growth of the unknown. In truth, cloud 

systems are far from being as adaptive and dynamic as they ought to be given today’s total 

dependency on a digital world. 

When these concepts are formalized into a Bayesian framework, they take the form 

of a time series likelihood optimization. The framework is a continuous differential 

analysis comparing measurements to a posterior of a likelihood estimation. The resulting 

error or deviation is the most informative gain. The deviations (unknown) are marginalized 

(unmodeled), and it becomes imperative to solve for their magnitude, or ||{¬k| ¬k}||, as an 

information measure. It is not necessary to have models of the deviations to make decisions. 

In many cases, high entropy data - as it may get closer to random - are mathematically 

complex as it may be highly non-linear and close to noise in dimensionality. Measuring 

the magnitude (information content) is a simpler task and can quantify uncertainty. The 

measure of uncertainty is computed using Shannon Information Theory. 

Naturally, this lends itself to finding the maximum bit encoding measures as 

information. This is readily available from the data without the need to decode the data at 

all time. Independency is achieved across platforms, and the information index measure 

spans all data, whether encrypted or not. The magnitude of the uncertainty is entropic and 

will be addressed with corresponding information theory mathematical measures. 

Optimally sampling in the uncertainty space coincides with the MES theory. It 

lends itself to maximizing the information and minimizing the entropy for non-stationary 

processes, which coincides with the nature of sampling the unknown. Sampling for 

deviations is the same problem as sampling points on a multidimensional function and is a 

stochastic process. The usage of maximum likelihood estimation and MES approaches to 

maximize information follows the typical implementation of these theories. 

In practical example, measuring the weight of a bucket is informative to a user who 

has developed a sensitivity sense to weights without having to sort out what is in the bucket. 

When bucket weights comparison sampled in different location will become informative 
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about the underlying topology changes, or the deviations in a cyber-security case. A more 

popular use case than bucket comparison analysis is the science behind Searching for 

Extraterrestrial Intelligence (SETI) computational algorithms, even though in SETI 

“Intelligence” is not even well-defined. 

The science behind building a Trust Evaluation Function (TEF) score, roughly 

speaking, is when applying Shannon’s theorem to the information content carried by the 

deviation, one can deduce that any transformation scheme cannot, on average, have more 

than one bit of information per bit of deviation. This means that any value less than one bit 

of information per bit of deviation can be attained. The entropy of a deviation per bit 

multiplied by the length of that deviation is a measure of how much total information the 

deviation contains. Therefore, the maximum amount of information is calculated as the 

entropy of all the deviations. 

In summary, techniques are described herein for managing unknown-unknowns in 

cyber-security. Trust degradation is a precursor index to failure. The use cases of scoring 

the trust degradation in a system span to almost every aspect in networking, edge and cloud 

included. A well devised TEF will cover many use cases: for example (1) better and 

adaptive private key management (e.g., re-keying); (2) better and adaptive end user 

experience password management and its fine grain monitoring in a data center; (3) better 

and adaptive digital asset certifications; (4) troubleshooting; and (5) real-time scalability 

and risk assessment for extremely large network, for example in federated cloud 

environment. The features of a digital trust scoring will start to reflect the likelihood of 

erosion of trust created on day 0. Platform independency is achieved when the score is a 

degradation of the trust and not the trust value alone. A trust value may start erroneously, 

but the rate of change lead to continuous evaluation. Therefore, the originating trust is set 

as a prior. Erosion will thus work with time against the assumed original trust. In the 

example of an expiration date or a combinatorial complexity erosion of a private key, the 

realization of a trust erosion is not a Boolean fail pass type, but a relative factor number. 

On a comprehensive integrated analytical dashboard, the trust factor produces the percent 

life left of given a digital secret. 
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