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Abstract 

An overview of the global development of Supercritical Water-Cooled Reactors (SCWRs) has been given. The 

SCWR concept is the natural design path and ultimate evolution of conventional reactors today as the vast 

majority of modern power nuclear reactors are water cooled units. The move from subcritical to supercritical 

pressures by the thermal power industry over the past 50 years has been successful. The SCWR concept follows 

two main types of large reactor vessel as found in conventional Pressurized Water Reactors (PWR) and Boiling 

Water Reactors (BWR); and distributed pressure tubes as found in Canadian and Russian nuclear reactor designs. 

The concept has been designed to operate with a thermal spectrum core, fast spectrum core or mixed spectrum 

core. SCWRs promise to increase the efficiency of modern nuclear power plants from 30 - 35% to about 40 - 

45% and reduce capital and operational costs. Most of the SCWR designs are still at the conceptual stage and are 

not expected to be implemented till 2030 because of the challenges faced in thermal-hydraulics and construction 

materials chemistry that would withstand supercritical conditions. 

Keywords: SCWR, PWR, BWR, thermal spectrum, fast spectrum, mixed spectrum, capital and operational costs. 

 

1. Introduction and Historical Development of SCWRs 

As a clean energy source nuclear energy has become very important on a global scale, undergoing rapid 

development which developing countries such as Nigeria are now encouraged to harness for base-load units 

within their energy matrix. Nuclear Energy holds the potential to provide a clean, reliable and affordable supply 

of energy for meeting the growing needs of Nigeria’s economy while protecting the environment and ensuring 

energy security. From the global nuclear park today, water-cooled reactors are the dominant product design of 

nuclear power plants and moving from subcritical to supercritical conditions has been the natural design path in 

the evolution of water cooled reactors over the past 50years (Pioro and Duffey, 2007). However, the current 

generation of water cooled reactors has some shortcomings from long-term development point of view ranging 

from economic competitiveness to low fuel utilization. In order to eliminate these shortcomings, some developed 

countries like Japan, China, Canada, and Russia have started R&D work on nuclear power plants with 

supercritical water-cooled reactors (SCWR) concept.  

According to Pioro and Duffey (2007), the design of SCWRs is seen as the natural and ultimate evolution from 

today’s conventional nuclear reactors obtaining its main features from the modern PWR at high pressure of 

~16MPa, direct-cycle or once-through design of BWRs, steam superheaters from experimental reactors, and 

modern supercritical turbines, at pressure of ~25MPa and inlet temperature of ~600
0
C that has been operating 

successfully at thermal plants for many years. Therefore, supercritical Nuclear Power Plants (NPPs) have higher 

operating parameters when compared to modern conventional NPPs as shown in Fig 1. 

An SCWR is a direct cycle nuclear system that operates under supercritical pressure conditions (~25 MPa). The 

coolant at the outlet of the reactor core has a temperature higher than 500
o
C and goes directly to the turbine. 

With a thermal efficiency as high as 45%, the SCWR has much higher thermal efficiency than existing water-

cooled reactors (Oka, 2000). In addition, nuclear power plants using supercritical water as coolant have no need 

of steam generator, pressurizer or steam separator. Hence, the cooling system is significantly simplified as 

shown in Fig. 1. 

Also, direct thermo-chemical or indirect electrolysis production of hydrogen at low cost could be possible 

because of the higher supercritical water temperatures. The low cost is due to increased process efficiencies. 

According to IAEA (1999), the optimum required temperature is about 850
o
C and the minimum required 

temperature is around 650
o
C to 700

o
C, well within modern material capability. 
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Fig. 1: Schematic Diagram of Plant Systems  ( Oka et al, 2010) 

 

SCWR concepts have been studied as early as the 1950s and 1960s in the USA and former USSR. The table 

below lists the major characteristics of the first concepts of SCWRs. 

Table 1: First concepts of SCWR (Oka, 2002; 2000) 

 Company/Reactor Acronym (year) 

 Westinghouse GE, Hanford B  & W 

Parameters SCR(1957) SCOTT-

R(1962) 

SCR (1959) SCFBR (1967) 

Reactor Type Thermal Thermal Thermal fast 

Pressure, MPa 27.6 24.1 37.9 25.3 

Power, MW 

(thermal/electrical) 

70/21.2 2300/1010 300/~ 2326/980 

Thermal Efficiency, % 30.3 43.5 ~40 42.2 

Coolant Temperature, at the 

outlet, 
o
C 

538 566 621 538 

Primary Coolant flow  

rate, kg/s 

195 979 850 538 

Core height/diameter, m/m 1.52/1.06 6.1/9.0 3.97/4.58 ~ 

Fuel material UO2 UO2 UO2 MOX 

Cladding material SS SS Inconel –X SS 

Rod Diameter/Pitch, mm/mm 7.62/8.38 ~ ~ ~ 

Moderator H2O Graphite D2O ~ 

Explanations to the table:  

Acronyms: GE – General Electric; B & W – Babcock & Wilcox; SCR – SuperCritical Reactor; SCOTT-R – 

SuperCritical Once-Through Tube reactor; and SCFBR – SuperCritical Fast Breeder Reactor 

 

2. Requirement and Consideration of SCWRs 

An SCWR, from a technological perspective, is an integration of already existing generations of water cooled 
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reactor technology and supercritical fossil-fired power generation technology. These already existing 

technologies ensure technological availability for the development of SCWRs. 

The main objectives of using supercritical water in nuclear reactors are to (Pioro and Duffey, 2007): 

1. Increase the efficiency of modern nuclear power plants (NPPs) from 33%-35% to about 40%-45%; and 

2.  Decrease capital and operational costs and hence decrease electrical energy costs. 

Increased efficiency arises primarily from higher outlet temperatures and cost reduction is expected from the 

simplification of the design with the absence of components such as steam separators and steam dryers; smaller 

condenser and reactor building; and a reduction in the number of steam lines. 

The SCWR concept is classified as a Generation IV reactor, where the Generation IV project, initiated by the 

United States Department of Energy’s (US DOE) Office of Nuclear Energy, Science and Technology, is a new 

generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that offers 

significant advances toward challenging goals.  

In a broad sense, requirements and considerations which could be used for the design of SCWRs are given below 

according to (Aksan, 2011): 

• Generation IV requirements: The design of SCWR takes into consideration the goals of generation IV 

reactors which can be categorized into 4 broad areas viz: sustainability (fuel utilization and waste 

management), safety and reliability, economics (competitive life cycle and energy production cost), and 

proliferation resistance/physical protection. 

• European Utility Requirements (EUR): This was developed by the major European utilities to define 

the features of future plants one of which is SCWR. The EUR scope was to allow development of 

competitive, standardized designs that would match the conditions in Europe and be licensable in the 

respective countries (EUR, 2010). 

• IAEA Safety Requirements: IAEA International Project on Innovative Nuclear Reactors and Fuel 

Cycles (INPRO) has established a set of requirements, organized in a hierarchy of basic principles, user 

requirements and criteria, comprising an indicator and an acceptance limit in all areas that must be 

fulfilled by an innovative nuclear energy system (INS) such as SCWR to meet the overall target of 

sustainable energy supply.  

• Western European Nuclear Regulator’s Association (WENRA): The design of SCWR also follows 

the guidelines of WENRA which is a network of Chief Regulators of EU countries with nuclear power 

plants and Switzerland as well as of other interested European countries which have been granted 

observer status. The main objectives of WENRA are to develop a common approach to nuclear safety, 

to provide an independent capability to examine nuclear safety in applicant countries and to be a 

network of chief nuclear safety regulators in Europe exchanging experience and discussing significant 

safety issues. 

 

3.  Global Development of Scwr Concept 

Thirty years after the concepts of nuclear reactors cooled with water at supercritical pressure were studied in 

early 1950s and 1960s in the USA and former USSR (Oka, 2000), the idea of developing a Supercritical Water-

Cooled Reactor became enticing as the ultimate development path for water cooled reactors. A number of 

countries (Canada, Germnay, Japan, Korea, Russia, USA and others) have active R&D programmes on this 

concept and the following Table 2 shows the design parameters for these countries’ SCWR concepts for easy 

comparison. However, this manuscript reviews the global development of SCWR concept in Canada and 

Europrean Union with emphasis on thermodynamic cycle, core design, fuel design and safety systems. 
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Table 2: Design Parameters for SCWR concepts (Leung, 2011) 

 

Parameters Units 
Canadia

n SCWR 

SCW

R-M 
HPLWR JSCWR 

Superfa

st 

Reactor 

SCWR-

SM 

VVER-

SCP 

US 

SCWR 

Country - Canada China EU Japan Korea Russia USA 

Organization - AECL SJTU EU-JRC 

Toshiba

/U. of 

Tokyo 

U. of 

Tokyo 
KAERI 

OKB 

“Gidropre

ss”, IPPE 

INEEL 

Reactor 

Type 
- PT RPV RPV RPV RPV RPV RPV RPV 

Spectrum - Thermal Mixed Thermal Thermal Fast Thermal 
Fast-

resonance 

Therma

l 

Power 

Thermal 
MW 2540 3800 2300 4039 1602 3182 3830 3575 

Linear 

max/aver 

kW/

m 
 39/18 

35/14, 8, 

4.5 (a) 
-/13.5  

39/14.2

6 
-/15.6 39/19.2 

Thermal eff % 48 ~44 43.5 42.7 ~44  43-45 45 

Pressure MPa 25 25 25 25 25 25 24.5 25 

Tin Coolant 
0
C 350 280 280 290 280 280 290 280 

Tout  Coolant 
0
C 625 510 500 510 508 510 540 500 

Flow Rate Kg/s 1320 1927 1179 2105 820  1890 1843 

Active core 

height 
m 5.0 4.5 4.2 4.2 2 3.66 4.05 4.27 

Equiv. core 

diameter 
m ~4.55 3.4 3.8 3.34 1.86  3.6 3.93 

Fuel - Pu-Th 
UO2/

MOX 
UO2 UO2 MOX UO2 MOX UO2 

Cladding 

material 
- SS SS 316SS 310SS SS  

Austenitic 

alloy 

(ChS-68, 

EP-172) 

SS 

No of  FA - 336 284 1404 372 162/73 193 241 145 

No of FR in 

FA 
- 78 

180/3

24 
40 192 252/127 316 252 300 

Drod mm 
7/12.4/1

2.4 (b) 
8 8 7 5.5 9.516 10.7 10.2 

Pitch mm Vary 
9.6/9.

6 
9.44  6.55 11.5 12 11.2 

moderator - D2O 
H2O/-

- 
H2O H2O -/ZrH ZrH2 H2O H2O 

Explanation of Table: 

(a)Evaporator, superheater 1, superheater 2 (b) Outer, middle and inner rings 

3.1 Canada’s SCWR Concept 

In this concept, the main features of the Canadian Deuterium Uranium (CANDU) reactor (Modular fuel channels 

and Heavy water moderator) are retained in addition to supercritical light water coolant at pressure of 25MPa 

and outlet temperature up to 625
0
C. Besides, separation between moderator and coolant is unique to CANDU 

reactor which is an advantage in the area of enhanced passive safety system especially when the moderator 

(Heavy Water) acts as a passive heat sink. 
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Fuel Design 

• Three concentric rings of fuel with 

15, 21 and 42 fuel element with fuel 

composition being 13% plutonium in 

thorium 

• A large non-fuel element in the 

center (Zirconia surrounded by 

cladding) which reduces coolant void 

temperature. 

• Fuel cladding option could either be 

austenitic stainless steel, martensitic 

steel or oxide dispersion 

strengthened steel.  
Fig 2: Fuel Design (Yestisir, 2011) 

Core Design 

• Vertical channels 

• High pressure inlet plenum which 

simplifies refuelling process, reduce 

lattice pitch and relatively low 

temperature (350
0
C) 

• Low Pressure moderator 

• Channel outlets connecting to header 

with small diameter reducing 

material thickness requirement 

 
Fig 3: Core Design (Yestisir, 2011) 
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Thermodynamic Cycle 

• Similar to the current advanced 

turbine configuration of Supercritical 

fossil power plant 

• High-pressure “steam” is fed directly 

into the steam turbine(direct steam 

cycle) which ensures improved 

efficiency and plant simplification 

• Moisture separator reheater reduces 

the steam moisture inside the low 

pressure turbines 

 
Fig 4: Thermodynmica Cycle (Yestisir, 2011) 

3.2 European Union’s SCWR Concept 

The European Union’s SCWR concept is named High Performance Light Water Reactor (HPLWR) which is of 

reactor pressure vessel type with thermal power of 2300MW and electric power of 1000MW. It operates at 

25MPa pressure with core exit temperature of 500
0
C. HPLWR has a three-zone core: evaporator, superheater 1 

and superheater 2 as shown below. 

Fuel Design 

 
                                                          Fig 5: HPLWR three-zone core ( Schulenberg, 2009) 



Journal of Energy Technologies and Policy                                                                                                                                      www.iiste.org 

ISSN 2224-3232 (Paper)   ISSN 2225-0573 (Online) 

Vol.3, No.7, 2013 

 

7 

Core Design 

• Equivalent core diameter is 3.8m 

• Inlet flow splits into two: 

- Upward to cool the dome 

and down through the gap 

between assemblies 

- Downward to lower plenum 

at temperature from 280
0
C 

to 310
0
C 

• Heat-up is in 3 steps with 

coolant mixing between steps to 

eliminate hot streaks: 

- Upflow in evaporator 

(310
0
C to 390

0
C) 

- Downflow in 

superheater 1 (390
0
C to 

433
0
C) 

- Upflow in superheater 2 

(433
0
C to 500

0
C) 

 
Fig. 6: HPLWR Core Design ( Schulenberg, 2009) 

Thermodynamic Cycle 

• It uses BWR concept and 

supercritical pressure fossil-fired 

power plant 

• Steam from the reactor is fed to 

the high pressure turbine, 

undergoes re-heat using part of 

the extracted steam and then 

enters the intermediate pressure 

turbine and low pressure turbine. 

 

 
Fig 7: Thermodynamic Cycle (Brandauer et al , 2009) 

 

4. SCWR Safety 

Existing SCWR designs are in conceptual or preconceptual design stages, thereby making safety analysis 

difficult as there is a lack of operational experience and reduced levels of specific information, and that goes 

without saying that such design stages are the most cost effective time to improve safety of design. The 

effectiveness of a Probabilistic Risk Analysis (PRA) which provides a systematic method for achieving safety 

goals may be limited by information availability early in the design phase but it is easier to make corrections 

earlier in the design phase. 

Most international designs (Japan, EU, Canada) have the Advanced Boiling Water Rector (ABWR) safety 

systems as a practical starting point with similar shutdown system(s); Safety Relief Valve (SRV) for pressure 

relief; containment venting; active and passive Residual Heat Removal (RHR); Emergency Core Cooling (ECC) 
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systems based on power availability; and use of passive systems, core catcher, containment cooling, and 

hydrogen mitigation in the case of severe accidents. 

Some general issues for consideration in the safety system design in the case of the HPLWR (SCWR) include: 

• the case of the water inventory within the primary system being ~1/8 compared to a BWR or PWR – 

thus it is mandatory for all sequences to maintain coolant flow through the core. 

• the heat transport capacity in the case of loss of off-site power influenced by inertia of the pumps is 

provided for by a flywheel for main coolant pumps and sufficient inertia of main coolant pump and 

motor; for PWRs and BWRs respectively – thus such a measure should be decided for the SCWR 

As SCWR neutronics does not uniquely require any new physics to be modelled, existing codes may be 

upgraded to an extent of being able to simulate transients. Though, implementation of adequate coupling of 

thermal hydraulics and neutronics; and experimental data is needed for validation of the codes. A model for heat 

transfer deterioration is also necessary. Code-by-code comparison for selected transients is also encouraged to 

validate integrity of results. 

 

5. Challenges and On-Going Research & Development 

Common SCWR design challenges affect four areas namely: Materials, Chemistry, thermal hydraulics and safety. 

Materials: There is no single alloy with sufficient information to confirm its performance for in-core 

components (like internals and fuel cladding) of SCWR. There is need for research on materials that are thermal 

and corrosion resistant. However, for out-of-core components, materials could be selected based on the materials 

characteristics for Supercritical fossil-fired power plant. 

Chemistry: The available experimental data showed that there is a rapid change in chemical properties the 

coolant due to change in Supercritical water (SCW) density near critical and pseudo-critical point which has 

strong impact on corrosion and stress corrosion cracking (SCC). Moreover, SCWR in-core radiolysis is 

markedly different from those of conventional water cooled reactors which makes extrapolation of behaviour 

inappropriate. 

Thermal-hydraulics: Due to lack of phase change in SCWR, cladding temperature limits are now the design 

criteria in lieu of the traditional Critical Heat Flux (CHF) criteria. Then, accurate prediction of SCW heat transfer 

is essential to establish the power output and safety margin and this requires experimental data for relevant 

bundle geometry at conditions of interest that are not available. Most available experimental data on SCW heat 

transfer were obtained with tubes which are applicable to fossil-plant boiler but not directly to SCWR geometry 

and conditions. 

Safety: There is need for establishment of design-basis-accidents and potential initiators of severe accidents 

which covers: need for transient experimental data on supercritical heat transfer, experimental SCW data on 

critical flow for the design of safety/relief valve and depressurization systems, experimental data and analytical 

model to predict the onset of instability in the system, coupled neutronics and thermal-hydraulics analysis which 

is required for design calculation and integral test data at supercritical conditions to validate outcome of safety 

analysis codes. 

In the light of all the aforementioned challenges, the need for R&D arises mainly from the differences of the 

reactor systems in the areas of supercritical pressure water as coolant, high temperature/pressure in the core and 

the design of the plant total system. However, no significant R&D will be necessary for Balance of Plant (BOP) 

because SC fossil-fired plant technologies can be applied with the inclusion of radioactivity in the main steam 

line. 

 

6. Conclusion 

Global SCWR concepts have successfully been proposed over time as the basic science of SCWR neutronics 

generally has no unique (new) physics to be modelled; only the geometry, temperature and properties are 

different from the conventional. Though many reactor physics codes can perform calculations under these 

conditions, the validity and accuracy of these codes needs to be rigorously demonstrated (especially with issues 

of higher fuel and moderator temperatures and harder neutronic spectrums). Coupling thermal hydraulics and 

netronics is however required to reflect specific features of SCWR cores. 

The established science and technology of supercritical fossil-fired power plants and water cooled reactors has 

provided a good resource base for development of SCWR concepts. However, challenges arise as reactor vessel 

integrity is of particular concern to SCWR cores and vessel materials in order to produce low leakage cores due 

to SCC and fatigue issues at weld overlays and coatings as some vessels may be vulnerable to embrittlement at 

supercritical conditions. 

Further research is encouraged in the aforementioned areas and newcomer countries such as Nigeria should look 

towards advanced reactor technologies such as SCWRs with attractive advantages of improved efficiencies and 
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reduced costs in order that upon deployment of such reactor system, it would be affordable after the resolution of 

all the challenges and safety issues. 

 

References 

Aksan N, (2011), Overview on Some Aspects of Requirements and considerations for the Design of SCWRs, 

Joint ICTP-IAEA Training Course on Science and Technology of Supercritical Water-Cooled Reactors, 

International Centre for Theoretical Physics(ICTP), Trieste, Italy,27
th

 June to 1st July, (Lecture ID. SC03) 

Brandauer M, Schlagenhaufer M, Schulenberg T, (2009), Steam cycle optimization for the HPLWR, 4th Int. 

Symp. on SCWR, Heidelberg, Germany, March 8-11, Paper No. 36 

Cheng X, Liu X.J, and Yang Y.H, (2007), A Mixed Core for Supercritical Water-cooled Reactors, Nuclear 

Engineering and Technology, 40(2), pp. 117-126. 

EUR, (2001), Volume 2: Generic Requirements, Chapter 1: Safety Requirements (Parts 1 and 2) 

IAEA Safety Standards, (2009),  http://www-ns.iaea.org/standards/documents/  

Leung L, (2011), Overview of Global Development of  SCWRs Concept,  Joint ICTP-IAEA Training Course on 

Science and Technology of Supercritical Water-Cooled Reactors, International Centre for Theoretical 

Physics(ICTP), Trieste, Italy,27
th

 June to 1st July, (Lecture ID. SC04) 

Oka, Y. (2000) , Review of high temperature water and steam cooled reactor concepts, Proceedings of the 1st 

International Symposium on Supercritical Water-Cooled Reactor Design and Technology (SCR-2000), Tokyo, 

Japan, November 6–8, Paper No. 104. 

Oka, Y., (2002), Review of high temperature water and steam cooled reactor concepts, Proceedings of the 

International Congress on Advances in Nuclear Power Plants (ICAPP’02), Hollywood, FL, USA, June 9–13, 

Paper No. 1006, 20 pages. 

Oka, Y., Koshizuka, S., Ishiwatari, Y. and Yamaji, A., (2010), Super Light Water Reactors and Super Fast 

Reactors, Springer, 416 pages.  

Oka, Y., Koshizuka, S., Okano, Y. et al., (1996), Design concepts of light water cooled rectors operating at 

supercritical pressure for technological innovation, Proceedings of the 10th Pacific Basin Nuclear Conference, 

Kobe, Japan, October 20–25, pp. 779–786. 

Pioro, I.L. and Duffey, R.B.( 2007), Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power 

Engineering Applications, ASME Press, New York, NY, USA, 334 pages. 

Schulenberg T, Starflinger J, Heinecke J, (2008), Three pass core design proposal for a high performance light 

water reactor, Progress in Nuclear Energy 50 p 526-531, 2008 

WENRA, (2010), Statement on Safety Objectives for New Nuclear Power Plants, Western European Nuclear 

Regulator’s Association, November. 

Yetisir M, Diamond W,  Leung L.K.H, Martin D, Duffey R, (2011), Conceptual Mechanical Design for A 

Pressure-Tube Type Supercritical Water-Cooled Reactor, Proc. 5th International Symposium on Supercritical 

Water-cooled Reactors, Vancouver, Canada, March 13-17, 2011. 



This academic article was published by The International Institute for Science, 

Technology and Education (IISTE).  The IISTE is a pioneer in the Open Access 

Publishing service based in the U.S. and Europe.  The aim of the institute is 

Accelerating Global Knowledge Sharing. 

 

More information about the publisher can be found in the IISTE’s homepage:  

http://www.iiste.org 

 

CALL FOR PAPERS 

The IISTE is currently hosting more than 30 peer-reviewed academic journals and 

collaborating with academic institutions around the world.  There’s no deadline for 

submission.  Prospective authors of IISTE journals can find the submission 

instruction on the following page: http://www.iiste.org/Journals/ 

The IISTE editorial team promises to the review and publish all the qualified 

submissions in a fast manner. All the journals articles are available online to the 

readers all over the world without financial, legal, or technical barriers other than 

those inseparable from gaining access to the internet itself. Printed version of the 

journals is also available upon request of readers and authors.  

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische 

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial 

Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/Journals/

