
Technical Disclosure Commons

Defensive Publications Series

June 20, 2018

Optimizer for user-interface layout computations
John Hoford Hoford

Nicolas Roard

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Hoford, John Hoford and Roard, Nicolas, "Optimizer for user-interface layout computations", Technical Disclosure Commons, (June
20, 2018)
https://www.tdcommons.org/dpubs_series/1269

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/234667272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F1269&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1269&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1269&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/1269?utm_source=www.tdcommons.org%2Fdpubs_series%2F1269&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Optimizer for user-interface layout computations

ABSTRACT

User-interface (UI) developers use design tools such as layout managers to lay out UI

elements. A good design tool enables developers to create efficient user interfaces, while itself

being efficient to use. Current design tools sometimes produce designs that have inefficient user

interfaces, e.g., inflexible (hard-to-change) layouts, or user interfaces with performance

problems.

This disclosure provides techniques that improve the efficiency of the computations

underlying the UI design tool. Additionally, the techniques provide direct, visual feedback

attributing computational cost to specific sub-areas of the screen, enabling developers to

optimize the user interface.

KEYWORDS

● user interface

● UI design

● layout manager

● constrained layout

● widgets

● design tool

● positioning rules

BACKGROUND

 User-interface (UI) developers use computer-aided design tools, e.g., layout managers, to

lay out UI elements. A good layout manager tool enables developers to create efficient user

interfaces, while itself being efficient to use. Performance problems in user interfaces are

2

Hoford and Roard: Optimizer for user-interface layout computations

Published by Technical Disclosure Commons, 2018

important for UI developers to address since an ill-performing UI can negatively affect user

adoption and/or retention of an application. This is particularly true for user interfaces for mobile

systems and applications.

 Modern user interfaces comprise widgets positioned by a layout manager. Layout

managers typically follow two approaches:

● relatively simple positioning rules, with complex layouts achieved by nesting multiple

layout managers; or

● relatively complex and powerful rules, with complex layouts achieved by a single layout

manager.

The first approach is easier to implement but can lead to inflexibility or hard-to-change layouts.

The second approach is more flexible. However, both approaches can lead to performance or

efficiency problems when designing complex user interfaces.

Some layout managers, typically of the second approach, enable developers to position

widgets using constraints expressed in terms of a set of linear equations. These constraints are

solved via linear programming techniques, e.g., simplex. An issue with linear-constraints based

layout managers is that the resulting matrix can become large, even if sparse. While powerful,

such layout managers run into performance issues, e.g., when dealing with complex situations

such as when the user interface includes a large number of widgets.

DESCRIPTION

This disclosure describes an efficient approach to the computations underlying the layout

manager. The computational approach described herein enables attribution of computational cost

to specific sub-areas of the screen. Such attribution is provided as visual feedback, e.g., via a

heat map, thereby enabling developers to make suitable changes to optimize the user interface.

3

Defensive Publications Series, Art. 1269 [2018]

https://www.tdcommons.org/dpubs_series/1269

A key observation is that linear-constraints based layout managers do not expose the

underlying linear equations directly. Rather, a high-level grammar of constraints is presented to

developers using, e.g., a visual editor. These constraints are often unambiguous, such that the

power of a linear equation solver is unnecessary; instead, per techniques of this disclosure, direct

resolution is achieved.

Fig. 1: Example of a layout manager

Fig. 1 illustrates an example of a layout manager (102) used by UI developers to develop

user interfaces. A simulated version of the user interface (104) is presented within the visual

editor of the layout manager. This enables developers to create and experiment with designs such

as placing or moving a button (106).

4

Hoford and Roard: Optimizer for user-interface layout computations

Published by Technical Disclosure Commons, 2018

Fig. 2: The visual editor of a layout manager, and calculations underlying a UI design

Fig. 2 illustrates the visual editor (202) of a layout manager, and the calculations

underlying a design (206). In the illustrated example, a user of the visual editor makes a design

change, e.g., “move button B 60 units to the right of button A” (204). The underlying

calculations comprise generating a set of linear equations (208), solving the equations (210), and

computing a resulting position (212) of the UI element, e.g., button B. Per techniques of this

disclosure, certain design changes are resolved directly (214) without the need to perform the

steps of equation generation and solving.

In many situations, the direct resolution pass, as described herein, results in a substantial

reduction in the number of variables and equations sent to the equation solver. This improves the

overall efficiency of the layout manager, in turn resulting in better performance of the user-

interface as seen by the end-user. Per the techniques described herein, ambiguous situations are

still solved by the equation solver, thereby resulting in a fast layout manager that allows complex

situations to be expressed.

5

Defensive Publications Series, Art. 1269 [2018]

https://www.tdcommons.org/dpubs_series/1269

Fig. 3: Representing widgets as a graph of interconnected nodes, and simplifying graph by direct

resolution

 Fig. 3 illustrates the mechanism of direct resolution. A widget is associated with each

node, such that the set of widgets forms a graph (302) of interconnected nodes. Each node, e.g.,

left, top, right, bottom, baseline, etc., can be connected to any other node. In this manner, the set

of widgets is described as a dependency graph of interconnected relationships between nodes.

Attributes of the links between the nodes include the types of constraints and costs of the

dependency. In graph 302, one or more nodes are known nodes (304), also referred to as

resolved nodes. Resolved nodes are illustrated in white, while unresolved nodes are illustrated in

grey.

6

Hoford and Roard: Optimizer for user-interface layout computations

Published by Technical Disclosure Commons, 2018

 The direct resolution mechanism traverses graph 302, and recognizes patterns of

relationships that result in non-ambiguous positioning, e.g.,

● basic offset from a resolved node;

● guidelines positioning on parent when dimension is known;

● centered and bias positioning between two already resolved nodes;

● chain/ group positioning between two already resolved nodes; etc.

Once such patterns are recognized, direct resolution collapses them to resolve the positioning of

the nodes. A resolved node in the graph propagates to its dependents (306), potentially enabling

them to be resolved as well. This results in a simplified relationship graph (308) that is easier to

solve. In many situations the graph collapses in its entirety eliminating the need to run the

equation solver. In this manner, the layout manager accrues performance gain.

A widget is typically associated with a specific area of the screen. Thus, the techniques of

this disclosure enable providing a visual representation to UI developers of the computational

cost of implementing the UI design in an end-user application. This informs UI developers about

areas in the layouts that are amenable to further optimization, thereby supporting developer-

driven optimization.

7

Defensive Publications Series, Art. 1269 [2018]

https://www.tdcommons.org/dpubs_series/1269

Fig. 4: Visual representation of computational hot-spots within a user-interface design

As illustrated in Fig. 4, the visual representation of the computational costs of a UI can be

surfaced in the form of warnings of hotspots (406) within a user interface (404) that is under

design using a layout manager (402). Alternately, the visual representation could be in the form

of a heat map of relative costs of the constraints at different portions of the screen of a device

that renders the user interface.

CONCLUSION

User-interface (UI) developers use design tools such as layout managers to lay out UI

elements. A good design tool enables developers to create efficient user interfaces, while itself

being efficient to use. Current design tools sometimes produce designs that have inefficient user

interfaces, e.g., inflexible (hard-to-change) layouts, or user interfaces with performance

problems. This disclosure provides techniques that improve the efficiency of the computations

underlying the UI design tool. Additionally, the techniques provide direct, visual feedback

8

Hoford and Roard: Optimizer for user-interface layout computations

Published by Technical Disclosure Commons, 2018

attributing computational cost to specific sub-areas of the screen, enabling developers to

optimize the user interface.

9

Defensive Publications Series, Art. 1269 [2018]

https://www.tdcommons.org/dpubs_series/1269

	Technical Disclosure Commons
	June 20, 2018

	Optimizer for user-interface layout computations
	John Hoford Hoford
	Nicolas Roard
	Recommended Citation

	tmp.1529468606.pdf.3A8XR

