Technical Disclosure Commons

Defensive Publications Series

June 19, 2018

EXTERNAL INTERFERENCE MANAGEMENT ON RADIO ACCESS NETWORK TECHNOLOGY

Ariel Kenig

Lior Steinberger

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation

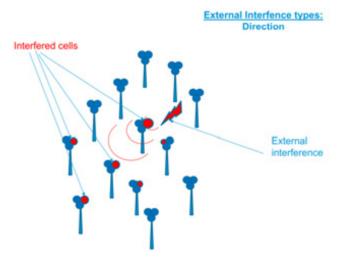
Kenig, Ariel and Steinberger, Lior, "EXTERNAL INTERFERENCE MANAGEMENT ON RADIO ACCESS NETWORK TECHNOLOGY", Technical Disclosure Commons, (June 19, 2018) https://www.tdcommons.org/dpubs_series/1258

This work is licensed under a Creative Commons Attribution 4.0 License. This Article is brought to you for free and open access by Technical Disclosure C

This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

EXTERNAL INTERFERENCE MANAGEMENT ON RADIO ACCESS NETWORK TECHNOLOGY

AUTHORS:


Ariel Kenig Lior Steinberger

ABSTRACT

The embodiments disclosed herein relate to automatically detecting and managing external interference present in cellular networks, which can significantly improve the availability and quality of network resources and the user experience. Eliminating the need to manually detect and manage sources of interference may, for example, reduce costs and the duration in which a network is negatively impacted.

DETAILED DESCRIPTION

There are numerous sources of external interference that decrease the quality of cellular networks. External sources of interference may include, for example, any radio source, such as baby monitors, security cameras, cordless telephones, wireless headphones, TV stations, and the like. Figure 1 illustrates an example of a directional interference source affecting cells.

Figure 1

In comparison, Figure 2 illustrates an example of an omnidirectional interference source.

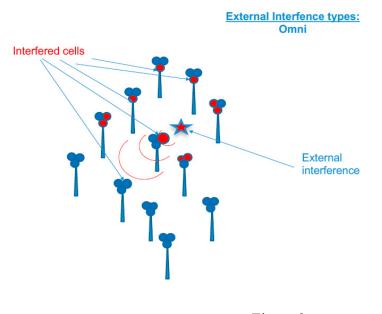


Figure 2

It may be extremely difficult for cellular operators to physically locate sources of interference. Furthermore, even when a source of interference is located, the process of eliminating the interference can be time-consuming. Some sources of external interference can impact dozens of cells.

The embodiments presented herein provide an automatic process for locating and managing external interference sources. The data sources of collected information include interference measurements, such as the interference power distribution in a frequency domain, in a time domain with a direction (azimuth) to the interferer, and according to the distribution of users.

First, the source of interference may be observed graphically. Figure 3 illustrates a graph of power over frequency when there is no external interference.

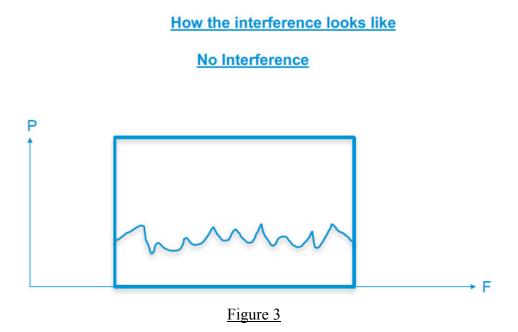
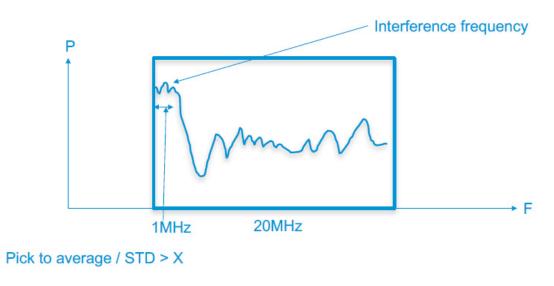
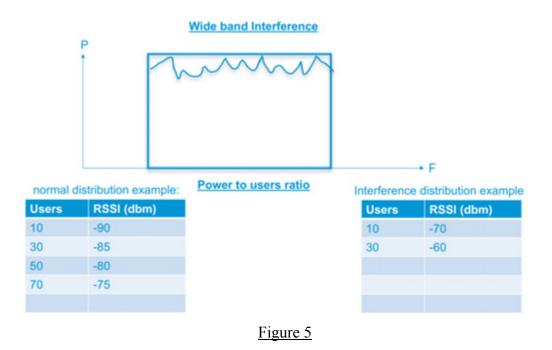


Figure 4 illustrates a graph of power over frequency when there is a narrowband external interference source.

Narrow band Interference

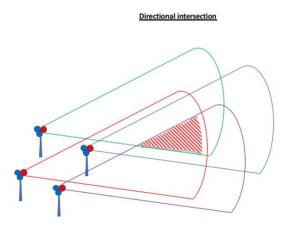

Figure 4

Figure 5 illustrates a graph of power over frequency when there is a wideband external interference source, which can be determined by observing a number of distributed users per received radio strength indication (RSSI).

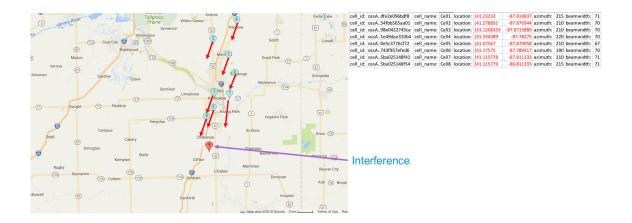

Areas may be classified according to groups of interfered cells (i.e., cells that are correlated to interference patterns by time and frequency), and sources of interference can be clustered based on directional (azimuth) intersections, and ranked according to the degree to which the area is affected, as measured by the key performance indicators (KPIs) of cells in the area. KPIs may include metrics such as retainability, accessibility, throughput, and the like.

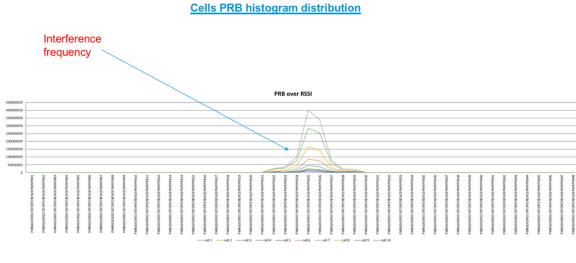
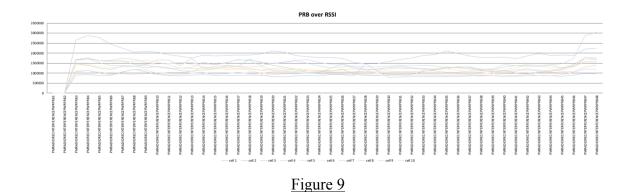
Figure 6 illustrates an example of a directional intersection of multiple cells.

Figure 6

Figure 7 illustrates an example of a source of interference presented on a map as part of the management and monitoring of the interference.

Figure 7

Figure 8 illustrates a PRB histogram over RSSI, "PMRADIORECINTERFERENCEPWRPRB," containing data from ten cells. While external interference can impact cells, all affected cells interfered by the same frequency can be observed.

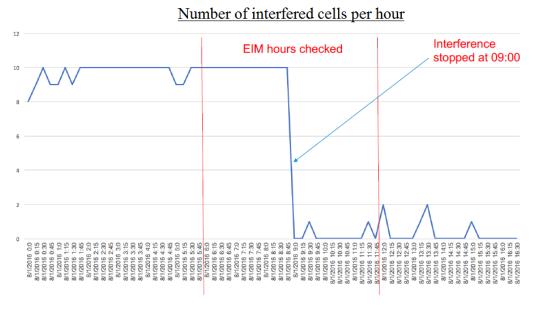

Figure 8

Figure 9 illustrates an example of a PRB over RSSI in which no external interference is occurring. It may be observed that all related cells have the same power over frequency distribution.

6

Figure 10 depicts a number of interfered cells distributed by time.

Thus, embodiments presented herein detect external sources of interference by comparing KPIs of affected cells. When an external interference source is located, traffic may be offloaded from affected cells while the interference persists.

Narrowband interference sources may be located by filtering for very strong interferences that affect multiple cells for some time. KPIs for each cell may be measured in order to determine whether a given cell is experiencing interference, and an interfered cell may be analyzed by comparing the interference behavior in two dimensions, time and frequency, with other interferences measured on other cells. After collecting all the interference patterns, a weighted intersection between all involved cells may be calculated to determine the coordinates of the external interference source. Figure 11, below, includes a table of attributes that are useful for determining the location of an external interference source.

App attributes

Attribute	Description	default	
cells_radius	Cells Radius to calculate polygon	50	
hours_correlation_threshold	How correlate should hours be with interference between cells in order to decide that both cells connected to the same external interference	0.9	
nterference_pattern_correlation_threshold	How correlate should the interference patterns be in order to decide that both cells connected to the same external interference	0.9	
add_to_beam_width_if_same_location	If cells in the same location need to increase beamwidth in order to get reasonable overlap outside of the cell	60	
radius_if_same_location	If cells in the same location need to reduce radius in order to get reasonable overlap outside of the cell	2	
pms_resolution	Time resolution of the pms	15	
peak_to_avg_as_interference	Peak to average to consider pattern as interference	4	
minimum_interference_times	Minimum interference time samples to consider as interference	8	
minimum cells in interference to show	Minimum cells with interference that interference has in order to analyze it	20	

Figure 11

Figures 12-15 illustrate an example of locating and managing an external interference source in accordance with the embodiments presented herein. Figure 12 illustrates a system that raises alerts when identifying external interferences

PIExp	olorer resourceTypes.length != (monitor.app_r	otice	95													Asia/Jerusa	
											Query O								
List	Appropriate										code::::FOUND_EXTERNAL_INTERFERENCE*								
elds											Order 🛛								
											× -timestamp		Page Size: 50	0 0 Page: 0 0					
all Fiel	ids O										Cell Query								
											Cell Query								
	column header here and crop it to group	but that	entrane.																
count	code		description	Den.	timestamo	800	arga	expiry	sent	role	hostname	key	submarket	modified on	machine id	ы	market	severity	
7	FOUND EXTERNAL INTERFERENCE	Net	Suspected interference coordination found in 41.7	false	2018-01-17107:56:35.2210(0+02:00	eim		2018-03-03T		readonly	io-vm-209.cisco.com	41	Netanya TEST 000	2018-01-17708:51:06	REPETAXVL1	50500594108	TEST	INFO	
7	FOUND_EXTERNAL_INTERFERENCE	Net	Suspected interference coordination found in 41.4	faise	2018-01-17107:56:28.577000+02:00	eim	8.1	2018-03-03T		reacionly	ic-vm-209.cisco.com	41	Netanya_TEST_000	2018-01-17108:50:58	REPTAXVL1	Saliee58c1e8	TEST	INFO	
8	FOUND_EXTERNAL_INTERFERENCE	Net	Suspected interference coordination found in 43.8	faise	2018-01-17107:38:37.398000+02:00	eim	R.L.	2018-03-03T		readonly	ic-vm-209.cisco.com	43	Netanya_TEST_000	2018-01-17108:51:06	. REPTAXVL1	Callee 15d1e8	TEST	INFO	
8	FOUND_EXTERNAL_INTERFERENCE	Net	Suspected interference coordination found in 40.8	faise	2018-01-17107:38:37.385000+02:00	eim	8.2.	2018-03-03T		reacionly	ic-vm-209.cisco.com	40	Netanya_TEST_000	2018-01-17108:51:06	. REPTAXVL1	5a5ee15d1e8	TEST	INFO	
8	FOUND_EXTERNAL_INTERFERENCE	Net	Suspected interference coordination found in 41.4	faise	2018-01-17707:38:37.368000+02:00	ein	B*_1	2018-03-03T		reacionly	io-vm-209.cisco.com	41	Netanya_TEST_000	2018-01-17708.51:06	. RERTAXVL1	6a5ee15d1e8	TEST	INFO	
	FOUND_EXTERNAL_INTERFERENCE	Net	Suspected interference coordination found in 41.7	faine	2018-01-17707:38:37.355000+02:00	ein	8-1-	2018-03-03T		reactorily	ic-vm-209.cisco.com	41	Netanya_TEST_000	2018-01-17707:38:37	REPTAXVL1	5a5ee15d1e8.	TEST	INFO	
8	FOUND_EXTERNAL_INTERFERENCE	Net	Suspected interference coordination found in 41.7	faise	2018-01-17107:38:37.341000+02:00	ein	B*.1	2018-03-03T		readonly	ic-vm-209.cisco.com	41	Netanya_TEST_000	2018-01-17T08.51:06	. RERTAXVL1	5a5ee15d1e8	TEST	INFO	
8	FOUND_EXTERNAL_INTERFERENCE	Net	Suspected interference coordination found in 38.5	faise	2018-01-17107:38:37.329000+02:00	ein	8.1	2018-03-03T		readonly	ic-vm-209.cisco.com	38	Netanya_TEST_000	2018-01-17T08:51:06	. REFTAXVL1	5a5ee15d1e8	. TEST	INFO	
8	FOUND_EXTERNAL_INTERFERENCE	Net	Suspected interference coordination found in 41.6	false	2018-01-17107:38:37.314000+02:00	eim	8.1.	2018-03-03T		readonly	ic-vm-209.claco.com	41	Netanya_TEST_000	2018-01-17708:51:06	. REPETAXVL1	SaSee15d1e8	TEST	INFO	
8	FOUND_EXTERNAL_INTERFERENCE	Net	Suspected interference coordination found in 41.8	faise	2018-01-17107:38:29.725000+02:00	eim	B	2018-03-03T		readonly	io-vm-209.cisco.com	41	Netanya_TEST_000	2018-01-17108:50:58	REPETAXVL1	5a5ee1551e8.	TEST	INFO	
8	FOUND_EXTERNAL_INTERFERENCE	Net	Suspected interference coordination found in 41.5	faise	2018-01-17107:38:29.710000+02:00	ein	R.1	2018-03-03T		reacionly	io-vm-209.cisco.com	41	Netanya_TEST_000	2018-01-17T08:50:58	REPTAXVL1	5a5ee1551e8_	. TEST	INFO	
	FOUND EXTERNAL INTERFERENCE	Net	Suspected interference coordination found in 41.4	faise	2018-01-17107:36:24 676000+02:00	ein.	11° 1	2018-03-03T		macionily	in-vm-209 cisco com	41	Netanya TEST 000	2018-01-17107-38-29	REPTAXVI 1	fafeeOcB1eB	TEST	INFO	

Figure 13 illustrates an example of a detailed interference alert on an estimated location with the interfered cells by time.

APP Notice description

Suspected interference coordination found in 40.868825167,-88.2258477742, affecting 11 cells.
on hours: 01/08/16 06:00,01/08/16 06:15,01/08/16 06:30,01/08/16 06:45,01/08/16
07:00,01/08/16 07:15,01/08/16 07:30,01/08/16 07:45,01/08/16 08:00,01/08/16 08:15,01/08/16
08:30,01/08/16 08:45,
<u>cell_ids</u> : [
{ <u>'strongest_interference</u> ': -88.43333710491699, ' <u>cell_id</u> ': 'son_cell_id_1'},
{' <u>strongest_interference</u> ': -90.29523676625338, ' <u>cell_id</u> ': 'son_cell_id_2'},
{' <u>strongest_interference</u> ': -93.48352907282019, ' <u>cell_id</u> ': 'son_cell_id_3'},
{ <u>'strongest_interference</u> ': -94.1453873360881, ' <u>cell_id</u> ': 'son_cell_id_4'},
{ <u>'strongest_interference</u> ': -94.57151438074006, ' <u>cell_id</u> ': 'son_cell_id_5'},
{' <u>strongest_interference</u> ': -95.72206704976938, ' <u>cell_id</u> ': 'son_cell_id_6'},
{' <u>strongest_interference</u> ': -98.26521518624818, ' <u>cell_id</u> ': 'son_cell_id_7'},
{' <u>strongest_interference</u> ': -98.97989793898222, ' <u>cell_id</u> ': 'son_cell_id_8'},
{ <u>'strongest_interference</u> ': -99.34201966552666, ' <u>cell_id</u> ': 'son_cell_id_9'},
{' <u>strongest_interference</u> ': -100.15126430346128, ' <u>cell_id'</u> : 'son_cell_id_10'}]

Figure 13

Figure 14 depicts an example of EIM log output in which an external interference source was found that was affecting two cells by the same time and frequency patterns.

log output example

eim is running
getting cells
getting pms
Mapping interferences
found interference with 2 cells: ['son_cell_id_1', 'son_cell_id_2']
Found: 37 unique interferencesCalculating interferences locationsinterference hours: (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
interference pattern: (-119, -119, -119.02897128392966, -119.028971289712897128971289712897128971289
119.02897128392966, -118.8359197319758, -118.8359197319758, -118.8359197319758, -118.8359197319758, -118.65108567503567, -107.28123911265199, -108.35386685883877, -
118.65108567503567, -118.65108567503567, -118.8359197319758, -118.8359197300000000000000000000000000000000000
118.8359197319758, -118.83591973
118.8359197319758, -118.8359197319758, -118.65108567503567, -118.65108567503567, -118.65108567503567, -118.65108567503567, -118.8359197319758, -118.8359197319758, -
118.8359197319758, -118.8359197319758, -118.65108567503567, -118.8359197319758, -118.65108567503567, -118.6510867500000000000000000000000000000000000
119, -110, -110, -110, -110, -110, -110, -110, -110, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -1
cell: son_cell_id_1 info: lat: -88.269968, lon: 41.461416, azimuth: 270, beamwidth: 57
cell: son_cell_id_2 info: lat: -88.269968, lon: 41.461416, azimuth: 30, beamwidth: 57
Estimated interference coordinated: POINT (-88.2699680000000058 41.4614159999999998)
eim is Done.

Figure 14

External interference sources can be managed when the interference occurs by cell shaping or traffic steering in the interfered cells in order to offload traffic from interfered cells (e.g., by locking a cell, changing thresholds, adjusting a tilt, changing a CIO, changing a CPICH, reducing power consumption, performing bandwidth adaptation, and the like) to less-interfered cells, such as cells in a different band frequency. By rerouting traffic from interfered cells to less-interfered cells, the impact on the network quality can be mitigated

and the subscriber experience improved. When the interference is stopped, the selforganizing network (SON) may rollback changes to their original values. Figure 15 illustrates an example of automatic offloading of traffic from interfered cells to lessinterfered cells.

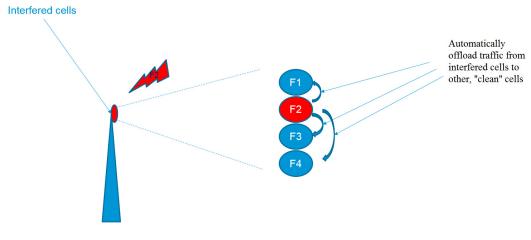


Figure 15