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BRANCHING NEURAL NETWORKS 

Abstract 

A conditional deep learning model that learns specialized representations on 

a decision tree is described. Unlike similar methods taking a probabilistic mixture 

of experts (MoE) approach, a feature augmentation based method is used to jointly 

train all network and decision parameters using back–propagation, which allows for 

deterministic binary decisions at both training and test time, specializing subtrees 

exclusively to clusters of data. Feature augmentation involves combining 

intermediate representations with scores or confidences assigned to branches. Each 

representation is augmented with all of the scores assigned to the active branch on 

the computational path to encode the entire path information, which is essential for 

efficient training of decision functions. These networks are referred to as Branching 

Neural Networks (BNNs). As this is an approach that is orthogonal to many other 

neural network compression methods, such algorithms can be combined to achieve 

much higher compression rates and further speedups. 

Background 

Deep learning has become the dominant approach for challenging Computer 

Vision (CV) tasks. Now in almost every benchmark dataset, convolutional neural 

networks (CNN) consistently reach the lowest error rates, and even achieve human-

level recognition rates for many image recognition tasks. However, the use of CNNs in 

real-time CV applications and products has lagged behind other classical approaches. 

This is primarily because the most important metric for real world applications and 
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products is the accuracy that can be achieved within a small predefined computational 

budget. 

Unfortunately, evaluation of CNN models remains computationally intensive. 

Even on modern GPUs, it can be orders of magnitude higher than that of other 

alternatives such as Randomized Decision Forests (RDFs) for CV tasks. Most mobile 

devices such as phones or standalone Augmented and Virtual Reality (AR/VR) 

headsets have limited computational resources for these tasks, but also typically require 

high accuracy. 

There is now significant recent attempts at increasing the speed of CNNs, for 

instance by pruning layers in an energy-aware manner, by substitution of filters with 

smaller ones, or by quantizing or binarizing weights. These techniques whilst effective, 

rely on compressing the networks by optimizing weights and filter sizes, without a 

drastic reduction in accuracy. 

An orthogonal approach focuses on architectures for CNNs exploiting branching 

and tree-like structures without losing the benefits of deep networks, by maximizing 

speed and filter specialization through conditional branching, specifically for highly 

efficient real-time scenarios. The biggest challenge for these methods is effectively 

training such networks and their branching functions, while optimizing the network for 

binary decision making to optimize runtime speeds. 

 

 

 

3

Defensive Publications Series, Art. 1245 [2018]

https://www.tdcommons.org/dpubs_series/1245



 

Description 

Conditional Computing, as described herein, relies on conditional activation or 

deactivation of individual neurons or sub-networks on a per-example basis. Such a network 

can be thought of as a decision tree, where each node transforms its input via a 

transformation function contained within, and a decision function attached to the node 

selects the next node from a set of valid children, conditioned on some feature maps. The 

transformation functions can be any differentiable mapping, including convolutions. 

Other related work has common characteristics, such as employing a set of 

parametric functions for learning representations that can be specialized by conditioning 

on the input by selection of parametric routers at training or test time. Their differences lie 

in how the decisions are made (stochastic, deterministic, binary, sparse, dense) and how these 

parameters are learned (jointly, independently, iteratively, via RL, via back-propagation). 

One known limitation is mixing hard, binary decisions with back-propagation, while still 

allowing for specialized representation learning. 

A method to train transformation and decision parameters jointly via back- 

propagation using only binary decisions at both training and test time is described. A 

conditional decision function assigns real valued confidences to each valid child node as in 

the case of probabilistic MoE approaches. Only the highest scoring branch is activated, and 

its corresponding confidence value is concatenated to the feature map that was produced by 

the current node. Each such confidence is used to augment every feature map on the rest of 

the computational path. At leaves, the final representation contains all the confidences of 

each decision, which effectively encodes the path taken by the input as a real valued vector. A 

standard objective function is then used to train the network, which jointly estimates decision 
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and transformation parameters via back-propagation. The loss function is differentiable with 

respect to every parameter everywhere except for the decision boundaries. Similar methods 

for tackling hard decisions have been proposed for decision trees without transformation 

functions. BNNs improve on such methods by (i) allowing conditional representation 

learning, (ii) removing the back-propagation bottleneck for decision parameters by a skip-

connection trick, and (iii) smoothing the energy landscape around decision boundaries by 

linearly blending two branches when the confidences are small. 

The BNNs described herein include: 

• a feature augmentation method to train conditional neural networks with binary 

decisions, 

• a skip connection method to encode the entire path information in a feature map 

for efficient training of decision parameters, 

• a regularization method to estimate gradients for examples close to decision 

boundaries, and 

• discussion of ways to initialize and regularize decision parameters 

A BNN is a full 𝑘𝑘-ary tree of depth 𝐷𝐷 ≥ 1, with 𝑘𝑘𝐷𝐷−1 leaf nodes and 𝑘𝑘𝐷𝐷−1 − 1 split 

nodes. For 𝐷𝐷 = 1, it reduces to a regular CNN. A differentiable and parametric transformer 

function Φ𝑠𝑠: ℝdim �𝑥𝑥𝑑𝑑
′ � → ℝdim(𝑥𝑥𝑑𝑑+1) contained in a node with index 𝑠𝑠 in level 𝑑𝑑 transforms 

its augmented (defined below) input feature map 𝑥𝑥𝑑𝑑′  to 𝑥𝑥𝑑𝑑+1, such that: 

 𝑥𝑥𝑑𝑑+1 = Φ𝑠𝑠(𝑥𝑥𝑑𝑑′ ;  𝜃𝜃𝑠𝑠). (1) 

The rank and dimensionality of each feature map is determined by the type of operations 

applied as in regular CNNs. A differentiable and parametric decision function (a router) Ψ𝑠𝑠 ∶
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 ℝdim (𝑥𝑥𝑑𝑑+1) → ℝ+
𝑘𝑘  also contained in the node (except for leaf nodes) conditionally assigns non-

negative scores ℎ𝑑𝑑 to each of the 𝑘𝑘 children, such that: 

 ℎ𝑑𝑑 = Ψ𝑠𝑠(𝑥𝑥𝑑𝑑+1;𝜌𝜌𝑠𝑠). (2) 

A non-parametric and non-differentiable function (an activator) Υ ∶  ℝ𝑘𝑘 → {0,1}𝑘𝑘 maps 

the scores ℎ𝑑𝑑 to the activation vector 𝑟𝑟𝑑𝑑, which is a one-hot encoding of the activated branch. 

This can easily be achieved by an arg max operation followed by one hot encoding, or by using 

the following function: 

 𝑟𝑟𝑑𝑑 = Υ(ℎ𝑑𝑑) = � ℎ𝑑𝑑
max (ℎ𝑑𝑑)

�. (3) 

𝑟𝑟𝑑𝑑 is explicitly used to activate the next node. Also, the set of activations {𝑟𝑟𝑑𝑑}1𝐷𝐷 can be 

used to determine which nodes were active during the forward pass for each sample, such that: 

 𝐴𝐴𝑠𝑠 = �01
 node is inactive

node is active  (4) 

𝐴𝐴1 is always 1 for every sample, and activity of other nodes are determined from 𝑟𝑟𝑑𝑑 at 

each level. The children of inactive nodes are also inactive. 

 
 

Figure 1: Feature augmentation: Left: when feature map rank is 1, 
confidences are simply concatenated to the end, Right: For higher rank feature 
maps, confidences are duplicated and concatenated to each pixel. 

 

The output representation is then augmented with all of the confidence vectors {ℎ𝑖𝑖} 𝑑𝑑  
𝑖𝑖=1 

produced on the path with a feature map specific function that concatenates the confidences to the 
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feature map in a suitable manner. For a flat representation 𝑥𝑥𝑑𝑑+1 ∈ ℝ𝑚𝑚, augmentation is defined as 

follows: 

 𝑥𝑥𝑑𝑑+1′ = 𝑥𝑥𝑑𝑑+1⨁𝑖𝑖
𝑑𝑑ℎ𝑖𝑖 (5) 

Where ⨁ is the concatenation function, and 𝑥𝑥𝑑𝑑+1′ ∈ ℝ𝑚𝑚+𝑘𝑘𝑑𝑑. For convolutional 

transformations, where 𝑥𝑥𝑑𝑑+1 has a rank > 1, the confidences are concatenated to each pixel on 

the last dimension independently. A visual explanation is given in Figure 1. Finally, the leaf 

nodes map their input feature maps into the network output 𝑦𝑦�: 

 𝑦𝑦�𝑙𝑙 = 𝑥𝑥𝐷𝐷+1 = 𝐴𝐴𝑙𝑙Φ𝑙𝑙(𝑥𝑥𝐷𝐷′ ;𝜃𝜃𝑙𝑙) (6) 

 𝑦𝑦� = ∑ 𝑦𝑦𝑙𝑙𝐿𝐿
𝑙𝑙  (7) 

Only one of the leaf activations 𝐴𝐴𝑙𝑙 is 1 for an example at a given run. A binary BNN 

example is depicted in Figure 2. 

To train a BNN via back propagation, we need the derivative of the loss function with 

respect to all the weights in the model. For a generic loss ℒ(𝑦𝑦,𝑦𝑦�) and weight 𝜔𝜔𝑖𝑖 , the chain rule 

gives: 

 𝜕𝜕ℒ(𝑦𝑦,𝑦𝑦�)
𝜕𝜕𝜔𝜔𝑖𝑖

= 𝜕𝜕ℒ(𝑦𝑦,𝑦𝑦�)
𝜕𝜕𝑦𝑦�

𝜕𝜕𝑦𝑦�
𝜕𝜕𝜔𝜔𝑖𝑖

 (8) 

      = 𝜕𝜕ℒ(𝑦𝑦,𝑦𝑦�)
𝜕𝜕𝑦𝑦�

∑ 𝜕𝜕𝑦𝑦𝑙𝑙
𝜕𝜕𝜔𝜔𝑖𝑖
𝑙𝑙  (9) 

            = 𝜕𝜕ℒ(𝑦𝑦,𝑦𝑦�)
𝜕𝜕𝑦𝑦�

∑ �𝜕𝜕Φ𝑙𝑙
𝜕𝜕𝜔𝜔𝑖𝑖

𝐴𝐴𝑙𝑙 + Φ𝑙𝑙
𝜕𝜕𝐴𝐴𝑙𝑙
𝜕𝜕𝜔𝜔𝑖𝑖

� .𝑙𝑙  (10) 
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Figure 2: Branching Neural Network: Each split node has a transformer 
Φ𝑠𝑠, a router Ψ𝑠𝑠, and an activator Υ. Each leaf only has one transformer. 

 

Here, 𝜕𝜕𝐴𝐴𝑙𝑙
𝜕𝜕𝜔𝜔𝑖𝑖

 is always 0, and only one of 𝜕𝜕Φ𝑗𝑗

𝜕𝜕𝜔𝜔𝑖𝑖
 is non-zero, where 𝐴𝐴𝑗𝑗 = 1. This shows that all 

derivatives for the inactive branches disappear, making each sample to contribute only to its own 

active branch.  

Augmenting each feature map at level 𝑑𝑑 with {ℎ𝑖𝑖} 𝑑𝑑  
𝑖𝑖=1 as opposed to just ℎ𝑑𝑑 creates direct 

channels from each node to all of the decision parameters of its grandparents. This can be seen as 

the skip-connection trick applied to just the decisions, helping with the training of decisions that 

appear early on the computational path. These back-channels are visualized in Figure 3. 

 
 

Figure 3: Augmenting with all ancestral confidences creates direct back–
channels in the back–propagation step. 
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Making hard decisions ensures specialization of each subtree to its own cluster only. 

However, this can potentially increase the generalization error due to samples close to decision 

boundaries ending up on the wrong branch because of noise. Since datasets are finite and limited 

in number of samples, it is a good idea to simulate nearby samples by adding zero-mean noise to 

decisions. 

This ensures that branches are not ignorant to samples that can potentially end in them. 

Another approach is using dropout as a regularizer throughout the network, as it has a similar 

effect on decisions. 

Time complexity of making an inference with BNNs is very close to a regular CNN that 

has the same architecture as the active branch of the BNN, with the only overhead being making 

decisions. As these are typically linear projections in the feature space, they are negligible 

compared to the much more expensive convolutional operations. 

To improve the load balance, it is possible to use some of the existing information gain 

maximization techniques as a regularizer. Although such methods already exist, they rely on this 

regularizer only to train decision parameters. 

It is possible to extend the formulation to allow making decisions on the raw input feature 

space, as in the case of RDFs. In this case, decision parameters can be initialized by first training 

an RDF greedily, and then the network can be refined by global optimization. 

BNNs can easily be implemented and trained in auto-differentiation frameworks that 

support masking in the batch dimension. After each decision, a masked version of the mini-batch 

is sent to each child node, meaning that the batch size gets smaller after each decision. 
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For other frameworks that do not support batch-masking, the entire mini-batch can be 

sent to every node, and the results can be multiplied with the activations at the leaves, although it 

is a more inefficient solution. 

Another important consideration is automatic gradient scaling, which needs to be off to 

make sure the leaf contributions are properly scaled. 

Each leaf is assigned a separate loss, and the minimized objective is the sum over all 

losses. This gives the model the flexibility to use different types of losses at each leaf. 

To showcase BNNs, it is applied to a complex semantic segmentation task. Given a 

dataset with depth images of people performing gestures and label masks for left hand, right 

hand and body classes, a fully convolutional CNN is trained first to do classification, which 

achieves 85.5% accuracy. Figure 4 shows how to add a decision layer to convert the CNN to a 

BNN of depth 2. It is straightforward to add more decisions to further increase the depth. In this 

simple case, BNNs perform better by reaching 86.7%. 

 
 

Figure 4: BNNs on Hand Segmentation A BNN that employs a router 
after the deconvolutions of the original CNN. The last convolutions and 
classification are specialized to each branch. 
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Here, a conditional deep learning model is described that combines divide-and-conquer 

approaches with representation learning, specifically allowing for binary decisions to be used at 

both training and test time for better speed and specialization. Feature augmentation is used as a 

method to jointly train all network parameters using back-propagation. Furthermore, new issues 

that arise from this approach were identified and solutions for each presented. As this is an 

approach that is orthogonal to many other DNN compression methods, such algorithms can be 

combined to achieve much higher compression rates. 
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