
Technical Disclosure Commons

Defensive Publications Series

June 12, 2018

BRANCHING NEURAL NETWORKS
Ufuk Can Biçici

Cem Keskin

Shahram Izadi

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Biçici, Ufuk Can; Keskin, Cem; and Izadi, Shahram, "BRANCHING NEURAL NETWORKS", Technical Disclosure Commons,
(June 12, 2018)
https://www.tdcommons.org/dpubs_series/1245

https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F1245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/1245?utm_source=www.tdcommons.org%2Fdpubs_series%2F1245&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

BRANCHING NEURAL NETWORKS

Abstract

A conditional deep learning model that learns specialized representations on

a decision tree is described. Unlike similar methods taking a probabilistic mixture

of experts (MoE) approach, a feature augmentation based method is used to jointly

train all network and decision parameters using back–propagation, which allows for

deterministic binary decisions at both training and test time, specializing subtrees

exclusively to clusters of data. Feature augmentation involves combining

intermediate representations with scores or confidences assigned to branches. Each

representation is augmented with all of the scores assigned to the active branch on

the computational path to encode the entire path information, which is essential for

efficient training of decision functions. These networks are referred to as Branching

Neural Networks (BNNs). As this is an approach that is orthogonal to many other

neural network compression methods, such algorithms can be combined to achieve

much higher compression rates and further speedups.

Background

Deep learning has become the dominant approach for challenging Computer

Vision (CV) tasks. Now in almost every benchmark dataset, convolutional neural

networks (CNN) consistently reach the lowest error rates, and even achieve human-

level recognition rates for many image recognition tasks. However, the use of CNNs in

real-time CV applications and products has lagged behind other classical approaches.

This is primarily because the most important metric for real world applications and

2

Biçici et al.: BRANCHING NEURAL NETWORKS

Published by Technical Disclosure Commons, 2018

products is the accuracy that can be achieved within a small predefined computational

budget.

Unfortunately, evaluation of CNN models remains computationally intensive.

Even on modern GPUs, it can be orders of magnitude higher than that of other

alternatives such as Randomized Decision Forests (RDFs) for CV tasks. Most mobile

devices such as phones or standalone Augmented and Virtual Reality (AR/VR)

headsets have limited computational resources for these tasks, but also typically require

high accuracy.

There is now significant recent attempts at increasing the speed of CNNs, for

instance by pruning layers in an energy-aware manner, by substitution of filters with

smaller ones, or by quantizing or binarizing weights. These techniques whilst effective,

rely on compressing the networks by optimizing weights and filter sizes, without a

drastic reduction in accuracy.

An orthogonal approach focuses on architectures for CNNs exploiting branching

and tree-like structures without losing the benefits of deep networks, by maximizing

speed and filter specialization through conditional branching, specifically for highly

efficient real-time scenarios. The biggest challenge for these methods is effectively

training such networks and their branching functions, while optimizing the network for

binary decision making to optimize runtime speeds.

3

Defensive Publications Series, Art. 1245 [2018]

https://www.tdcommons.org/dpubs_series/1245

Description

Conditional Computing, as described herein, relies on conditional activation or

deactivation of individual neurons or sub-networks on a per-example basis. Such a network

can be thought of as a decision tree, where each node transforms its input via a

transformation function contained within, and a decision function attached to the node

selects the next node from a set of valid children, conditioned on some feature maps. The

transformation functions can be any differentiable mapping, including convolutions.

Other related work has common characteristics, such as employing a set of

parametric functions for learning representations that can be specialized by conditioning

on the input by selection of parametric routers at training or test time. Their differences lie

in how the decisions are made (stochastic, deterministic, binary, sparse, dense) and how these

parameters are learned (jointly, independently, iteratively, via RL, via back-propagation).

One known limitation is mixing hard, binary decisions with back-propagation, while still

allowing for specialized representation learning.

A method to train transformation and decision parameters jointly via back-

propagation using only binary decisions at both training and test time is described. A

conditional decision function assigns real valued confidences to each valid child node as in

the case of probabilistic MoE approaches. Only the highest scoring branch is activated, and

its corresponding confidence value is concatenated to the feature map that was produced by

the current node. Each such confidence is used to augment every feature map on the rest of

the computational path. At leaves, the final representation contains all the confidences of

each decision, which effectively encodes the path taken by the input as a real valued vector. A

standard objective function is then used to train the network, which jointly estimates decision

4

Biçici et al.: BRANCHING NEURAL NETWORKS

Published by Technical Disclosure Commons, 2018

and transformation parameters via back-propagation. The loss function is differentiable with

respect to every parameter everywhere except for the decision boundaries. Similar methods

for tackling hard decisions have been proposed for decision trees without transformation

functions. BNNs improve on such methods by (i) allowing conditional representation

learning, (ii) removing the back-propagation bottleneck for decision parameters by a skip-

connection trick, and (iii) smoothing the energy landscape around decision boundaries by

linearly blending two branches when the confidences are small.

The BNNs described herein include:

• a feature augmentation method to train conditional neural networks with binary

decisions,

• a skip connection method to encode the entire path information in a feature map

for efficient training of decision parameters,

• a regularization method to estimate gradients for examples close to decision

boundaries, and

• discussion of ways to initialize and regularize decision parameters

A BNN is a full 𝑘𝑘-ary tree of depth 𝐷𝐷 ≥ 1, with 𝑘𝑘𝐷𝐷−1 leaf nodes and 𝑘𝑘𝐷𝐷−1 − 1 split

nodes. For 𝐷𝐷 = 1, it reduces to a regular CNN. A differentiable and parametric transformer

function Φ𝑠𝑠: ℝdim �𝑥𝑥𝑑𝑑
′ � → ℝdim(𝑥𝑥𝑑𝑑+1) contained in a node with index 𝑠𝑠 in level 𝑑𝑑 transforms

its augmented (defined below) input feature map 𝑥𝑥𝑑𝑑′ to 𝑥𝑥𝑑𝑑+1, such that:

 𝑥𝑥𝑑𝑑+1 = Φ𝑠𝑠(𝑥𝑥𝑑𝑑′ ; 𝜃𝜃𝑠𝑠). (1)

The rank and dimensionality of each feature map is determined by the type of operations

applied as in regular CNNs. A differentiable and parametric decision function (a router) Ψ𝑠𝑠 ∶

5

Defensive Publications Series, Art. 1245 [2018]

https://www.tdcommons.org/dpubs_series/1245

 ℝdim (𝑥𝑥𝑑𝑑+1) → ℝ+
𝑘𝑘 also contained in the node (except for leaf nodes) conditionally assigns non-

negative scores ℎ𝑑𝑑 to each of the 𝑘𝑘 children, such that:

 ℎ𝑑𝑑 = Ψ𝑠𝑠(𝑥𝑥𝑑𝑑+1;𝜌𝜌𝑠𝑠). (2)

A non-parametric and non-differentiable function (an activator) Υ ∶ ℝ𝑘𝑘 → {0,1}𝑘𝑘 maps

the scores ℎ𝑑𝑑 to the activation vector 𝑟𝑟𝑑𝑑, which is a one-hot encoding of the activated branch.

This can easily be achieved by an arg max operation followed by one hot encoding, or by using

the following function:

 𝑟𝑟𝑑𝑑 = Υ(ℎ𝑑𝑑) = � ℎ𝑑𝑑
max (ℎ𝑑𝑑)

�. (3)

𝑟𝑟𝑑𝑑 is explicitly used to activate the next node. Also, the set of activations {𝑟𝑟𝑑𝑑}1𝐷𝐷 can be

used to determine which nodes were active during the forward pass for each sample, such that:

 𝐴𝐴𝑠𝑠 = �01
 node is inactive

node is active (4)

𝐴𝐴1 is always 1 for every sample, and activity of other nodes are determined from 𝑟𝑟𝑑𝑑 at

each level. The children of inactive nodes are also inactive.

Figure 1: Feature augmentation: Left: when feature map rank is 1,
confidences are simply concatenated to the end, Right: For higher rank feature
maps, confidences are duplicated and concatenated to each pixel.

The output representation is then augmented with all of the confidence vectors {ℎ𝑖𝑖} 𝑑𝑑
𝑖𝑖=1

produced on the path with a feature map specific function that concatenates the confidences to the

6

Biçici et al.: BRANCHING NEURAL NETWORKS

Published by Technical Disclosure Commons, 2018

feature map in a suitable manner. For a flat representation 𝑥𝑥𝑑𝑑+1 ∈ ℝ𝑚𝑚, augmentation is defined as

follows:

 𝑥𝑥𝑑𝑑+1′ = 𝑥𝑥𝑑𝑑+1⨁𝑖𝑖
𝑑𝑑ℎ𝑖𝑖 (5)

Where ⨁ is the concatenation function, and 𝑥𝑥𝑑𝑑+1′ ∈ ℝ𝑚𝑚+𝑘𝑘𝑑𝑑. For convolutional

transformations, where 𝑥𝑥𝑑𝑑+1 has a rank > 1, the confidences are concatenated to each pixel on

the last dimension independently. A visual explanation is given in Figure 1. Finally, the leaf

nodes map their input feature maps into the network output 𝑦𝑦�:

 𝑦𝑦�𝑙𝑙 = 𝑥𝑥𝐷𝐷+1 = 𝐴𝐴𝑙𝑙Φ𝑙𝑙(𝑥𝑥𝐷𝐷′ ;𝜃𝜃𝑙𝑙) (6)

 𝑦𝑦� = ∑ 𝑦𝑦𝑙𝑙𝐿𝐿
𝑙𝑙 (7)

Only one of the leaf activations 𝐴𝐴𝑙𝑙 is 1 for an example at a given run. A binary BNN

example is depicted in Figure 2.

To train a BNN via back propagation, we need the derivative of the loss function with

respect to all the weights in the model. For a generic loss ℒ(𝑦𝑦,𝑦𝑦�) and weight 𝜔𝜔𝑖𝑖 , the chain rule

gives:

 𝜕𝜕ℒ(𝑦𝑦,𝑦𝑦�)
𝜕𝜕𝜔𝜔𝑖𝑖

= 𝜕𝜕ℒ(𝑦𝑦,𝑦𝑦�)
𝜕𝜕𝑦𝑦�

𝜕𝜕𝑦𝑦�
𝜕𝜕𝜔𝜔𝑖𝑖

 (8)

 = 𝜕𝜕ℒ(𝑦𝑦,𝑦𝑦�)
𝜕𝜕𝑦𝑦�

∑ 𝜕𝜕𝑦𝑦𝑙𝑙
𝜕𝜕𝜔𝜔𝑖𝑖
𝑙𝑙 (9)

 = 𝜕𝜕ℒ(𝑦𝑦,𝑦𝑦�)
𝜕𝜕𝑦𝑦�

∑ �𝜕𝜕Φ𝑙𝑙
𝜕𝜕𝜔𝜔𝑖𝑖

𝐴𝐴𝑙𝑙 + Φ𝑙𝑙
𝜕𝜕𝐴𝐴𝑙𝑙
𝜕𝜕𝜔𝜔𝑖𝑖

� .𝑙𝑙 (10)

7

Defensive Publications Series, Art. 1245 [2018]

https://www.tdcommons.org/dpubs_series/1245

Figure 2: Branching Neural Network: Each split node has a transformer
Φ𝑠𝑠, a router Ψ𝑠𝑠, and an activator Υ. Each leaf only has one transformer.

Here, 𝜕𝜕𝐴𝐴𝑙𝑙
𝜕𝜕𝜔𝜔𝑖𝑖

 is always 0, and only one of 𝜕𝜕Φ𝑗𝑗

𝜕𝜕𝜔𝜔𝑖𝑖
 is non-zero, where 𝐴𝐴𝑗𝑗 = 1. This shows that all

derivatives for the inactive branches disappear, making each sample to contribute only to its own

active branch.

Augmenting each feature map at level 𝑑𝑑 with {ℎ𝑖𝑖} 𝑑𝑑
𝑖𝑖=1 as opposed to just ℎ𝑑𝑑 creates direct

channels from each node to all of the decision parameters of its grandparents. This can be seen as

the skip-connection trick applied to just the decisions, helping with the training of decisions that

appear early on the computational path. These back-channels are visualized in Figure 3.

Figure 3: Augmenting with all ancestral confidences creates direct back–
channels in the back–propagation step.

8

Biçici et al.: BRANCHING NEURAL NETWORKS

Published by Technical Disclosure Commons, 2018

Making hard decisions ensures specialization of each subtree to its own cluster only.

However, this can potentially increase the generalization error due to samples close to decision

boundaries ending up on the wrong branch because of noise. Since datasets are finite and limited

in number of samples, it is a good idea to simulate nearby samples by adding zero-mean noise to

decisions.

This ensures that branches are not ignorant to samples that can potentially end in them.

Another approach is using dropout as a regularizer throughout the network, as it has a similar

effect on decisions.

Time complexity of making an inference with BNNs is very close to a regular CNN that

has the same architecture as the active branch of the BNN, with the only overhead being making

decisions. As these are typically linear projections in the feature space, they are negligible

compared to the much more expensive convolutional operations.

To improve the load balance, it is possible to use some of the existing information gain

maximization techniques as a regularizer. Although such methods already exist, they rely on this

regularizer only to train decision parameters.

It is possible to extend the formulation to allow making decisions on the raw input feature

space, as in the case of RDFs. In this case, decision parameters can be initialized by first training

an RDF greedily, and then the network can be refined by global optimization.

BNNs can easily be implemented and trained in auto-differentiation frameworks that

support masking in the batch dimension. After each decision, a masked version of the mini-batch

is sent to each child node, meaning that the batch size gets smaller after each decision.

9

Defensive Publications Series, Art. 1245 [2018]

https://www.tdcommons.org/dpubs_series/1245

For other frameworks that do not support batch-masking, the entire mini-batch can be

sent to every node, and the results can be multiplied with the activations at the leaves, although it

is a more inefficient solution.

Another important consideration is automatic gradient scaling, which needs to be off to

make sure the leaf contributions are properly scaled.

Each leaf is assigned a separate loss, and the minimized objective is the sum over all

losses. This gives the model the flexibility to use different types of losses at each leaf.

To showcase BNNs, it is applied to a complex semantic segmentation task. Given a

dataset with depth images of people performing gestures and label masks for left hand, right

hand and body classes, a fully convolutional CNN is trained first to do classification, which

achieves 85.5% accuracy. Figure 4 shows how to add a decision layer to convert the CNN to a

BNN of depth 2. It is straightforward to add more decisions to further increase the depth. In this

simple case, BNNs perform better by reaching 86.7%.

Figure 4: BNNs on Hand Segmentation A BNN that employs a router
after the deconvolutions of the original CNN. The last convolutions and
classification are specialized to each branch.

10

Biçici et al.: BRANCHING NEURAL NETWORKS

Published by Technical Disclosure Commons, 2018

Here, a conditional deep learning model is described that combines divide-and-conquer

approaches with representation learning, specifically allowing for binary decisions to be used at

both training and test time for better speed and specialization. Feature augmentation is used as a

method to jointly train all network parameters using back-propagation. Furthermore, new issues

that arise from this approach were identified and solutions for each presented. As this is an

approach that is orthogonal to many other DNN compression methods, such algorithms can be

combined to achieve much higher compression rates.

11

Defensive Publications Series, Art. 1245 [2018]

https://www.tdcommons.org/dpubs_series/1245

	Technical Disclosure Commons
	June 12, 2018

	BRANCHING NEURAL NETWORKS
	Ufuk Can Biçici
	Cem Keskin
	Shahram Izadi
	Recommended Citation

	tmp.1528835261.pdf.xfqg8

