
Technical Disclosure Commons

Defensive Publications Series

June 04, 2018

Weight compression for deep networks using
Kronecker products
Yair Movshovitz-Attias

Elad Eban

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Movshovitz-Attias, Yair and Eban, Elad, "Weight compression for deep networks using Kronecker products", Technical Disclosure
Commons, (June 04, 2018)
https://www.tdcommons.org/dpubs_series/1221

https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F1221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/1221?utm_source=www.tdcommons.org%2Fdpubs_series%2F1221&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Weight compression for deep networks using Kronecker products

ABSTRACT

Deep networks have shown success in many challenging applications, e.g., image

understanding, natural language processing, etc. The success of deep networks is traced to the

large numbers of neurons deployed, each with weighted interconnections to other neurons. The

large numbers of weights result in classification accuracy, but also use significant memory.

This disclosure describes techniques to reduce the number of weights used in deep

networks by representing the matrices of deep network weights as the Kronecker product of two

or more smaller matrices. The reduction in weights is made possible by the observation that deep

networks do not always use a majority of their weights. Training procedures are described for the

resulting compressed network. The techniques of this disclosure enable deep networks to be

deployed in small footprint applications, e.g., mobile or wearable devices. Applications with no

immediate memory constraint, e.g., servers, also benefit by the greater speed of deployment

enabled by the techniques herein.

KEYWORDS

● deep neural networks

● DNN

● Kronecker product

● neural network compression

● weight compression

● lightweight neural nets

● machine learning

2

Movshovitz-Attias and Eban: Weight compression for deep networks using Kronecker products

Published by Technical Disclosure Commons, 2018

BACKGROUND

Deep networks are a type of machine learning model that uses multiple layers of

interconnected processing units (neurons) for feature extraction and generalization. Deep

networks have shown success in many challenging applications of machine intelligence, e.g.,

image understanding, natural language processing, etc. The success of deep networks is traced to

the large numbers of neurons deployed, each with several weighted interconnections to other

neurons. The success of deep models has encouraged researchers to design models with

increasing size. This results in improvements in accuracy but has the cost of increased memory

usage. Memory is a limiting factor in deploying deep networks in certain contexts, e.g., on

mobile and wearable devices. Memory constraints often force deep-network developers to

compromise in various ways e.g.,

● deploy a smaller network that has a lower performance;

● store the network on a server and communicate data and network predictions back and

forth; etc.

These approaches are sub-optimal in terms of latency and performance.

Even in settings where single-model memory is not an acute constraint (e.g., data centers)

model size has an important role. For example, new models are pushed to production on cloud

servers on a regular basis. The size of a model has a direct effect on the time it takes for a new

model configuration to be deployed. Therefore, model size is a factor that limits rapid

deployment. Additionally, many systems, e.g., driverless cars, employ multiple deep models and

in the aggregate memory usage of the multiple models taken together becomes prohibitive.

3

Defensive Publications Series, Art. 1221 [2018]

https://www.tdcommons.org/dpubs_series/1221

DESCRIPTION

While deep neural networks (DNNs) have many layers (depth) of parameters, it has been

shown that DNNs do not always need all the individual weights in each layer. The techniques of

this disclosure leverage this observation by storing in memory a few small weight matrices, and

assigning values to network parameters by judiciously extrapolating weights within these

matrices using the Kronecker-product operator.

 The Kronecker product A⊗B of two matrices A and B is a well-known mathematical

operation.1 Briefly, the Kronecker product of two matrices A and B is a matrix whose elements

comprise the scalar product of every possible pair of elements of A and B. Specifically, If

A=(ars) is an m×n matrix and B=(bvw) is a p×q matrix, then the Kronecker product A⊗B is the

mp×nq matrix given by:

(A⊗B)p(r-1)+v, q(s-1)+w = arsbvw (1)

The Kronecker product, also known as tensor product, is a generalization of the vector outer

product operator to matrices.

For an original deep network model, denoted Mo has a set of weights W=(w1, w2, …, wN),

where N is the total number of weights in the model, the techniques of this disclosure generate a

compressed model Mc comprising less than N weights, as follows.

Let the number of weights N in the original DNN Mo be factorized as N=m×p×n×q. An

order-2 Kronecker-compressed network Mc is a network of the same shape and number of

parameters, but with only m×n + p×q unique trainable weights arranged in two matrices A and B,

1 See https://en.wikipedia.org/wiki/Kronecker_product

4

Movshovitz-Attias and Eban: Weight compression for deep networks using Kronecker products

Published by Technical Disclosure Commons, 2018

https://en.wikipedia.org/wiki/Kronecker_product

according to equation (1). More generally an order-k compression, defined by the k-wise tensor

product of matrices A1, A2, ... , Ak respectively of dimensions n1×m1, …, nk×mk , is given by

W = A1 ⊗ A2 ⊗ … ⊗ Ak

where the number of parameters in W is N = Πk
i=1nimi .

The compressed model Mc is derived using the following steps:

● compression strength selection, e.g., Kronecker shape selection; and

● re-adjustment of deep network model, e.g., training of compressed model.

Each of the above is explained in greater detail below.

Compression strength selection

Fig. 1: Parameter reduction using Kronecker product

 Fig. 1 illustrates an example of parameter reduction using the Kronecker product. In Fig.

1, an original DNN comprising 16,384 weights is decomposed into a Kronecker product of two

matrices comprising 4,096 and 4 weights respectively, representing a parametric reduction of

75%, or a compression strength of 100−75=25%.

5

Defensive Publications Series, Art. 1221 [2018]

https://www.tdcommons.org/dpubs_series/1221

Fig. 2: Parameter reduction using Kronecker product

Fig. 2 illustrates another example of parameter reduction using the Kronecker product. In

Fig. 2, an original DNN comprising 16,384 weights is decomposed into a Kronecker product of

two matrices comprising 256 and 64 weights respectively, for parametric reduction of 98%, or a

compression strength of 100−98=2%.

In this manner, the compression strength is controlled by judiciously selecting the factors

m, n, p, and q of the number of weights N=m×p×n×q of the original DNN Mo.

Fig. 3: Parameter reduction using a sum of matrices, each being a Kronecker product

It is possible to generalize the decomposition of the original DNN Mo such that a

compressed network Mc comprises the sum of Kronecker products. This is shown in Fig. 3,

where an original DNN comprising 16,384 weights is decomposed into the sum of four matrices,

6

Movshovitz-Attias and Eban: Weight compression for deep networks using Kronecker products

Published by Technical Disclosure Commons, 2018

each such constituent matrix being the Kronecker product of two matrices comprising

respectively 32×32=1024 and 4×4=16 weights. The total parametric reduction is 74.7%.

Given an original DNN comprising N weights and a target compression strength α, there

are thus many ways (candidate decompositions) to achieve the target compression strength. A

python-language code-snippet that achieves the target compression strength is shown in Fig. 4.

For ease of computation, the code-snippet of Fig. 4 works for the case when the number of

weights N in the original DNN is a power of 4, but the code can easily be generalized to arbitrary

values of N.

7

Defensive Publications Series, Art. 1221 [2018]

https://www.tdcommons.org/dpubs_series/1221

Fig. 4: Code-snippet that computes Kronecker product decompositions of a DNN comprising N=22k

weights

The program of Fig. 4 accepts as input parameters the following:

● the size N of original DNN in the form of a base-4 exponent k (402), such that N=22k;

● a requested compression strength (404) alpha; and

● a requested number of candidate decompositions, num_decompositions (406).

The program returns as output a number of candidate decompositions (408), labeled as the return

value decompositions.

Example 1: The input parameters are k=7; alpha=25%, and num_decompositions=1. The

output decompositions represents Kronecker product of two matrices of sizes 64×64 and

2×2, as illustrated in Fig. 1.

Example 2: The input parameters are k=7; alpha=2%, and num_decompositions=1. The

output decompositions represents Kronecker product of two matrices of sizes 16×16 and

8×8, as illustrated in Fig. 2.

Example 3: The input parameters are k=7; alpha=25%, and num_decompositions=2.

Two candidate decompositions are returned,

● A first Kronecker product of two matrices of sizes 64×64 and 2×2, as illustrated

in Fig. 1; and

● A second Kronecker product being the sum of four matrices, each matrix being

the Kronecker product of two matrices of size 32×32 and 4×4, as illustrated in

Fig. 3.

Although the compressions achieved, e.g., as shown in Fig. 1-3, are significant, in many DNN

applications, there is only a slight loss in classification accuracy with use of the compressed

8

Movshovitz-Attias and Eban: Weight compression for deep networks using Kronecker products

Published by Technical Disclosure Commons, 2018

model. Also, there is no restriction on using a single Kronecker decomposition to represent the

entire original DNN. For example, each layer of the DNN can have a different Kronecker

decomposition targeted at different compression strengths.

 If the size N of the original DNN is not a power of 4, then the original set of weights may

be broken into subsets whose cardinality is a power of 4. For example, if N=3504, the code-

snippet of Fig. 4 can be run with k=5 (N = 45 =1024), such that four subsets of weights are

formed, each with 1024 weights. As 3504 weights are represented by four groups each with

45=1024 weights, 4×1024−3504=592 weights are surplus.

Fig. 5: Dividing weights into sets with power-of-4 cardinality

This is illustrated in Fig. 5, where the coefficient (502) of the highest power in the base-4

expansion of N=3504 is 3, while the highest power (504) itself is 5. Hence the set of weights is

divided into 3+1=4 groups of 45 =1024 weights each (506).

Mathematically, N is represented in base-4 arithmetic as:

N = a0 + a141 + a242 + a343 + … + ak-14k-1 + ak4k , where ai ∈ {0, 1, 2, 3}

The number of groups the N weights is divided into is ak. This is achieved by rounding N to the

first number N’such that ak-1’ = ak-2’ = … a0’ = 0 in the base-4 expansion of N’. It holds that

N≤ N’≤ 2N. Fig. 6 illustrates an example code snippet to round up N to the next-highest power

of 4.

9

Defensive Publications Series, Art. 1221 [2018]

https://www.tdcommons.org/dpubs_series/1221

Fig. 6: Rounding up to next-highest power of 4

Re-adjustment of deep network model

Having obtained a compressed deep neural network with a lower number of weights as

explained above, there remains the task of training the compressed network. Training can be

performed in at least two ways, e.g., training from scratch, training via network distillation, etc.

In training from scratch, the training procedure, e.g., backpropagation, gradient descent, etc., is

applied directly to the reduced set of weights to optimize the same loss function that is optimized

by the original network. In network distillation, the original network acts as a teacher that trains

the compressed network, which in turn acts as a student. The teacher network provides

predictions (training examples) that are used as targets by the student network for training

purposes.

10

Movshovitz-Attias and Eban: Weight compression for deep networks using Kronecker products

Published by Technical Disclosure Commons, 2018

Fig. 7: Selecting an optimal compressed network model from several candidate decompositions

Since several candidate decompositions are available, each with at least two training

procedures, each training procedure itself having tuning parameters, a final, optimal, choice is

made of the compressed network. This is illustrated in Fig. 7. Given the number of weights N in

an uncompressed network Mo , a candidate decomposition procedure (702) is run to obtain a

number of candidate decompositions (704a-c).

Each candidate decomposition is run through training procedures, e.g., training from

scratch (706a), distillation training (706b), etc. In case of distillation training, the original model

(708) serves as a teacher network to the candidate compressed networks. In either training

procedure, training hyper-parameters (710) are provided as necessary. At the end of training,

each candidate decomposition and training procedure is scored against a standard test-set. Scores

are generated for compressed networks trained from scratch (712a-c) and trained via distillation

11

Defensive Publications Series, Art. 1221 [2018]

https://www.tdcommons.org/dpubs_series/1221

(714a-c). An optimal score is selected (716) that results in an optimal selection of compressed

network, training procedure, and training hyper-parameters.

CONCLUSION

This disclosure describes techniques to reduce the number of weights used in deep

networks by representing the matrices of deep network weights as the Kronecker product of two

or more smaller matrices. The reduction in weights is made possible by the observation that deep

networks do not always use a majority of their weights. Training procedures are described for the

resulting compressed network. The techniques of this disclosure enable deep networks to be

deployed in small footprint applications, e.g., mobile or wearable devices. Applications with no

immediate memory constraint, e.g., servers, also benefit by the greater speed of deployment

enabled by the techniques herein.

12

Movshovitz-Attias and Eban: Weight compression for deep networks using Kronecker products

Published by Technical Disclosure Commons, 2018

	Technical Disclosure Commons
	June 04, 2018

	Weight compression for deep networks using Kronecker products
	Yair Movshovitz-Attias
	Elad Eban
	Recommended Citation

	tmp.1528129126.pdf.Yzl6S

