
Technical Disclosure Commons

Defensive Publications Series

May 25, 2018

Detecting Evasive Malicious URL Using Graph
Algorithm
Mu Lin

Sanjay d'Abreu Noronha

Kan Yan

Zhifeng Cai

Kevin Hayes

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Lin, Mu; d'Abreu Noronha, Sanjay; Yan, Kan; Cai, Zhifeng; and Hayes, Kevin, "Detecting Evasive Malicious URL Using Graph
Algorithm", Technical Disclosure Commons, (May 25, 2018)
https://www.tdcommons.org/dpubs_series/1208

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/234667143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F1208&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1208&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1208&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/1208?utm_source=www.tdcommons.org%2Fdpubs_series%2F1208&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

DETECTING EVASIVE MALICIOUS URL USING GRAPH ALGORITHM

Introduction

 The present disclosure provides systems and methods to enable inspecting of byte

streams using a bipartite match algorithm to detect the use of evasive techniques to defeat

Uniform Resource Locator (URL) filtering or filtering of other Uniform Resource Identifiers

(URI). Generally, URL filtering is one of the primary methods used to detect cyber threats.

However, the URL specification (e.g., as set forth in RFC 3986) is quite flexible and can allow

malicious actors to use evasive techniques to defeat algorithms used in URL filtering

technologies. The conventional way to inspect byte streams, in particular for web traffic, often

uses automata (e.g., Deterministic Finite Automaton (DFA), Nondeterministic Finite Automaton

(NFA)) or regular expression (regex)). These methods generally work well when the regex is

relatively "simple," but when evasive techniques are used, automata is less effective. The

systems and methods of the present disclosure can provide for inspecting byte streams using a

bipartite match algorithm. Effectively, the token can be kept simple, and the complexity of the

pattern (formed using the token) can be expressed using bipartite match terminology.

Summary

According to an aspect of the present disclosure, a two stage dynamic programming

algorithm is provided to enable inspecting of byte streams to detect use of evasive techniques to

defeat Uniform Resource (URL) filtering. This algorithm matches signatures once and only once

just like DFA in the first stage, and uses polynomial runtime to select a matching pattern in the

second stage.

2

Lin et al.: Detecting Evasive Malicious URL Using Graph Algorithm

Published by Technical Disclosure Commons, 2018

Detailed Description

The systems and methods of the present disclosure can provide for inspecting byte

streams using a bipartite match algorithm. According to an aspect of the present disclosure, the

token can be kept simple, and the complexity of the pattern (formed using the token) can be

expressed using bipartite match terminology. The pattern is a sequence of tokens. (Note that a

token can match to multiple signatures.)

The tokens in the pattern are adjacent and their order of appearance is significant, these

two factors are implicitly inconvenient for describing collections of signatures where order or

continuity (e.g., a pattern “abc” where a, b, and c are tokens and there are no other tokens in the

pattern) or both are not the matching criteria. The above can be difficult and/or expensive to

execute, even not possible, in DFA, as well as NFA when compounded with signature

polymorphism. From the first principle, this is a combinatorial pattern matching problem.

According to an aspect of the present disclosure, a two stage dynamic programming

algorithm and related data structure is provided as an alternative to DFA. This algorithm

matches signatures once and only once just like DFA in the first stage, and uses polynomial

runtime to select a matching pattern in the second stage.

According to an example implementation of the present disclosure, a two stage dynamic

programming algorithm comprises the following operations. Conceptually, in compile time, the

patterns are compiled into an n*m binary matrix plus one additional column to describe the

modifiers, where n is the number of patterns and m is the number of unique tokens used in the

patterns. The tokens are compiled into DFA as usual (e.g., partitioned per URL host + path

using a trie data structure) such that e(i,j)=1 if and only if the ith pattern has the jth token. In the

first stage of runtime, first an n*m binary matrix is built where n is the number of tokens

3

Defensive Publications Series, Art. 1208 [2018]

https://www.tdcommons.org/dpubs_series/1208

matched against the DFA (e.g., tokens are obtained from protocol/URL parsing phase) and m is

the number of tokens such that e(i,j)=true if and only if the ith token matches the jth token. Note

that the ith row can have multiple columns set to true. In the second stage of runtime, the sub

runtime n*m matrix is obtained for a particular pattern such that e(i,j)=true if and only if the ith

token matches the jth tokens in the pattern. A bipartite graph is equivalent to a matrix, therefore,

a bipartite graph can be built where there are two sets of vertex, n and m, where n is token and m

is signature. There is a weight 1 edge between an ith vertex in n and an nth vertex in m if e(i,j) in

the matrix is true.

The necessary condition for a pattern match is the bipartite graph's maximum bipartite

matching or max flow equals to m, the number of tokens in the pattern. This can be proven using

the definition of maximum bipartite matching/max flow, which will be called Raven Pattern

Matching Theorem L herein. It can be further proven that Theorem L is not only the necessary

but also the sufficient condition for patterns who have both orderfree and continuityfree

modifiers.

When patterns have only the orderfree modifier, there is a need to additionally check that

it is continuous max flow. The FordFulkerson algorithm (FFA) and its variants can be used to

determine the max flow number in O(Ef).

Function FFA

for each edge (u,v) in E(G)

do f[u, v] = 0 f[v, u] = 0 while there is a path p from s to t in the residual network Gf

do m = min{c(u, v)-f[u, v]: (u, v) is on p} for each edge (u, v) on p

do f[u, v] = f[u, v] + m f[v, u] = - f[u, v]

4

Lin et al.: Detecting Evasive Malicious URL Using Graph Algorithm

Published by Technical Disclosure Commons, 2018

FFA can be overkill since it deals with general graphs, whereas the HopcroftKarp

algorithm (HKA) is an example of a max flow algorithm for bipartite graphs. It runs in

O(E*sqrt(V)), and for random graphs, it runs in near linear time. For sparse graphs, HKA can

provide better results in worst case performance.

Function HKA

for each u in U

Pair_U[u] = NIL for each v in V

Pair_V[v] = NIL matching = 0 while BFS() == true

for each u in U

if Pair_U[u] == NIL

if DFS(u) == true

matching = matching + 1

return matching

It can be proven that if and only if the diagonals of the sub square m*m matrix are all

true, then it matches a pattern who has neither orderfree nor continuityfree. A naive algorithm

can determine the above in O(nm). A KnuthMorrisPratt style algorithm can be used to speed this

up.

Finally, it can be proven that the runtime is O(n) for patterns that have only

continuityfree.

All four combinations of orderfree and continuityfree therefore have polynomial runtime

complexity or better.

In conclusion, just like DFA is the mathematical model for regex, bipartite graph is a

good mathematical model to represent pattern.

5

Defensive Publications Series, Art. 1208 [2018]

https://www.tdcommons.org/dpubs_series/1208

For combinatorial analysis, the problem space is roughly P(k, n) * C(k, m) for k = 1…n

O(Ef) where E is the number of edges, f is max flow. When orderfree and continuityfree are

both specified in the pattern, it is better to specify the max number of parameters in order to have

the algorithm be bounded, the same for matching the signatures in the first stage.

Figure 1 depicts an example system 100 according to an implementation of the present

disclosure. Figure 1 illustrates one example computing system that can be used to implement the

present disclosure. Other computing systems can be used as well. The system 100 may

comprise one or more user computing devices, such as user computing device 102, one or more

firewalls, such as firewall 130, one or more filtering server computing systems, such as filtering

server computing system 140, and one or more web servers, such as web server(s) 160, coupled

over one or more networks, such as network 180.

The user computing device 102 can include one or more processors 104 and a memory

106. The one or more processors 104 can be any suitable processing device and can be one

processor or a plurality of processors that are operatively connected. The memory 106 can

include one or more non-transitory computer-readable storage mediums, such as RAM, ROM,

EEPROM, EPROM, flash memory devices, magnetic disks, etc., and combinations thereof. The

memory 106 can store data 108 and instructions 110 which are executed by the processor 104 to

cause the first computing device 102 to perform operations.

The user computing device 102 can also include one or more input/output interface(s)

116. One or more input/output interface(s) 116 can include, for example, devices for receiving

information from or providing information to a user, such as a display device, touch screen,

touch pad, mouse, data entry keys, an audio output device such as one or more speakers, a

microphone, haptic feedback device, etc. The user computing device 102 can also include one or

6

Lin et al.: Detecting Evasive Malicious URL Using Graph Algorithm

Published by Technical Disclosure Commons, 2018

more communication/network interface(s) 118 used to communicate with one or more systems or

devices, including systems or devices that are remotely located from the user computing device

102.

 According to an aspect of the present disclosure, the user computing device 102 can send

requests to and receive responses from one or more web servers, such as web server(s) 160. The

requests and responses can be processed through one or more firewalls, such as firewall 130, for

example, to protect the user computing device 102 from malicious actors. The firewall 130 can

communicate with filtering server computing system 140 to perform URL filtering as discussed

herein.

The filtering server computing device 140 can include one or more processors 142 and a

memory 144. The one or more processors 142 can be any suitable processing device and can be

one processor or a plurality of processors that are operatively connected. The memory 144 can

include one or more non-transitory computer-readable storage mediums, such as RAM, ROM,

EEPROM, EPROM, flash memory devices, magnetic disks, etc., and combinations thereof. The

memory 144 can store data 146 and instructions 148 which are executed by the processor 142 to

cause the filtering server computing device 140 to perform operations, for example, to

implement operations as discussed herein. The filtering server computing device 140 may

include one or more URL filtering systems 150 that can assist in identifying and/or filtering

invalid and/or malicious URL requests and/or responses. The URL filtering systems 150 can

include a bipartite matching subsystem 152 which can provide operations for malicious URL

filtering as discussed herein.

Figure 2 depicts a flowchart illustrating example operations 200 for inspecting of byte

streams using a bipartite match algorithm in accordance with aspects of the present disclosure.

7

Defensive Publications Series, Art. 1208 [2018]

https://www.tdcommons.org/dpubs_series/1208

Although operations 200 are shown and described in a particular order for purposes of

illustration and discussion, the operations are not limited to the particularly illustrated order or

arrangement and certain operations can be performed in different orders or simultaneously.

The operations begin at block 202 where patterns are compiled into an n*m binary matrix

plus one additional column to describe the modifiers, where n is the number of patterns and m is

the number of unique tokens used in the patterns.

At block 204, the signatures are compiled into DFA as usual (e.g., partitioned per URL

host + path using a trie data structure) such that e(i,j)=1 if and only if the ith pattern has the jth

token.

At block 206, in the first stage of runtime, an n*m binary matrix is built where n is the

number of tokens matched against the DFA and m is the number of signatures such that

e(i,j)=true if and only if the ith token matches the jth token.

At block 208, in the second stage of runtime, the sub runtime n*m matrix is obtained for

a particular pattern such that e(i,j)=true if and only if the ith token matches the jth tokens in the

pattern.

At block 210, a bipartite graph is built having two sets of vertex, n and m, where n is

token and m is signature. There is a weight 1 edge between an ith vertex in n and an nth vertex

in m if e(i,j) in the matrix is true.

At block 212, indication(s) can be provided for malicious URL(s) that are identified such

that appropriate response measures can be performed.

8

Lin et al.: Detecting Evasive Malicious URL Using Graph Algorithm

Published by Technical Disclosure Commons, 2018

Figures

9

Defensive Publications Series, Art. 1208 [2018]

https://www.tdcommons.org/dpubs_series/1208

Abstract

The present disclosure describes systems and methods to enable inspecting of byte

streams using a bipartite match algorithm to detect use of evasive techniques to defeat Uniform

Resource (URL) filtering. According to an aspect of the present disclosure, a two stage dynamic

programming algorithm is provided that matches signatures once and only once just like DFA in

the first stage, and uses polynomial runtime to select a matching pattern in the second stage.

According to an example implementation of the present disclosure, the patterns are compiled into

an n*m binary matrix plus one additional column to describe the modifiers, where n is the

number of patterns and m is the number of unique signatures used in the patterns. In the first

stage of runtime, an n*m binary matrix is built where n is the number of tokens matched against

the DFA and m is the number of signatures such that e(i,j)=true if and only if the ith token

matches the jth signature. In the second stage of runtime, the sub runtime n*m matrix is obtained

for a particular pattern such that e(i,j)=true if and only if the ith token matches the jth signatures

in the pattern. A bipartite graph can be built where there are two sets of vertex, n and m, where n

is token and m is signature. There is a weight 1 edge between an ith vertex in n and an nth vertex

in m if e(i,j) in the matrix is true.

10

Lin et al.: Detecting Evasive Malicious URL Using Graph Algorithm

Published by Technical Disclosure Commons, 2018

	Technical Disclosure Commons
	May 25, 2018

	Detecting Evasive Malicious URL Using Graph Algorithm
	Mu Lin
	Sanjay d'Abreu Noronha
	Kan Yan
	Zhifeng Cai
	Kevin Hayes
	Recommended Citation

	Microsoft Word - DOCS-#1626089-v1-GGLA-178-DPUB_DRAFT_Defensive_Publication

