
Technical Disclosure Commons

Defensive Publications Series

February 21, 2018

Application live-upgrading and error-recovery
using code-data decoupling
Till Smejkal
Hewlett Packard Enterprise

Dejan Milojicic
Hewlett Packard Enterprise

Paolo Faraboschi
Hewlett Packard Enterprise

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Smejkal, Till; Milojicic, Dejan; and Faraboschi, Paolo, "Application live-upgrading and error-recovery using code-data decoupling",
Technical Disclosure Commons, (February 21, 2018)
https://www.tdcommons.org/dpubs_series/1058

https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F1058&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1058&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1058&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/1058?utm_source=www.tdcommons.org%2Fdpubs_series%2F1058&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

1

Application live-upgrading and error-recovery using code-data decoupling

Abstract
When applications have critical bugs that present security vulnerabilities or may result in
serious failures with potential massive business level impact, these applications have to be
updated as fast as possible to minimize the harm of the bug. However, mission-critical or
other user-facing applications may maintain critical internal state that has to be serialized
and restored during the update process introducing signi1cant cost and delay.
Instead of serializing the internal state we propose to implement applications in such a way
that the application state is fully decoupled (e.g. in a different address space or shared
memory segment) from the application logic. Such a decoupling allows for example that
upgrades can happen without serialization of the data, even allowing side-by-side execution
of the updated and the failing version of the application and thereby reducing application
downtime during the update process. Furthermore, this decoupling also allows applications
to recover easily from failures by recovering the previous data of the crashed application
instance.

Problems Solved

This disclosure solves the following problems:

• Upgrading of applications to new versions with zero downtime

• Recovery from application failures

• Upgrading of shared libraries without application restart

• Preventing of ROP attacks based on shared libraries

Prior Solutions

This disclosure is related to the following other disclosures:

• MVAS core disclosure

• Application specific and transparent checkpointing

• Upgrading applications by stopping them and restarting

Outline Solution Description

In usual programs, application logic and application state reside in the same virtual address

space and are not further separated from each other. Accordingly, if an application crashes

or has to be terminated in order to be updated, the application’s current state is lost

together with the application. We propose, to decouple the state of the application from the

code part in such a way that the application state can exist independently of the process of

the application. Thus allowing it to be reused if the application crashes unexpectedly or has

to be updated. Possible ways to decouple the application state is to use functionalities such

as the shared memory support of Linux (SHM), multiple virtual address spaces (MVAS) or

memory-mapped files resulting in an address space layout as shown in Figure 1. Out of this

three solutions, SHM and MVAS are the most interesting ones, because they don’t introduce

2

Smejkal et al.: Application live-upgrading and error-recovery using code-data dec

Published by Technical Disclosure Commons, 2018

2

further performance overhead as it can occur when using memory-mapped files. However, if

the operating system does not provide either SHM or MVAS, the application can fall back to

using plain memory-mapped files to keep its state decoupled.

When an application uses the proposed technique to decouple its state and code memory

regions, the application’s overall execution would follow a scheme as outlined in Figure 2.

Before actually starting the main() function of the application, the memory region(s) where

the application’s state should be stored in have to be initialized. That means, depending on

the technique which is used by the application, a new virtual address space has to be

created, a new SHM region has to be allocated, or a new file has to be initialized and

memory mapped in the address space (marked with (1) in the figure). Just after this setup

phase is completed, the application can start its actual execution which must use the

provided memory regions to save internal state. One possible technique to ensure that the

application’s state is saved in the corresponding memory regions is to install a specialized

malloc() and free() function in the application together with the initialization of the memory

region.

(a) SHM (b) MVAS (c) mmapped files

Figure 1 The application’s address space layout when built with code-data decoupling based on

SHM (a), MVAS (b), or a memory-mapped file (c).

Figure 2 Execution scheme of an application using code-data decoupling.

3

Defensive Publications Series, Art. 1058 [2018]

https://www.tdcommons.org/dpubs_series/1058

3

After the application finishes its normal execution and exits from its main() function, an

additional step is necessary before the application can exit completely. The created memory

region that contains the application’s state has to be deleted again together with the data

allocated in the backing storage technique (step (2) in the figure). This step is only needed if

multiple application instances are independent and cannot reuse existing data.

Recovery from Application Crashes

By combining the code-data decoupling technique with additional support in the application

and some additional information that are kept together with the backing storage technique

(SHM, MVAS, or memory-mapped files), recovery from application crashes can easily be

added to an existing program that already uses code-data decoupling. The startup and

shutdown of the application only have to be slightly adapted as outlined in Figure 3.

Instead of always creating a new memory region for the application state during the startup

of the application, the application can check whether there is still an old version available

from which the application can recover. To be able to distinguish between crashed states

and states of applications that are currently running one can for example remember

together with the state to which application instance it belongs (e.g. by saving the programs

PID value with the state in the used backing storage technique). With this additional

information, one can easily identify states that belong to crashed applications simply by

checking if there is still a program running with the saved PID. If there is no old state

available from which the application can recover a new state memory region together with

the backing storage is created as described previously and the application executes as

usually. However, if there is an old state available, it is now possible to reopen this state and

reuse it in the new application (marked with (1) in the figure). Depending on the backing

storage technique different steps have to be executed to achieve this functionality. After the

(a) Start up with crash recovery support. (b) Shutdown with crash recovery support.

Figure 3 Execution schemes of an application that supports recovery from previous application

crashes when it starts up (a) and when it shuts down again (b).

4

Smejkal et al.: Application live-upgrading and error-recovery using code-data dec

Published by Technical Disclosure Commons, 2018

4

old application state was successfully reopen, the application’s start up is continued, with an

indicator that a recoverable state is available. This indicator causes the application to try a

recovery from the previous state (2) before it resumes its typical execution ((3) in the figure).

Depending on the application and the type of fault causing the crash, some old states are

not properly recoverable. If such a situation occurs, the programmer can decide on its own

how to handle it. One possible reaction could be to create a new state memory region, drop

the old one, and just continue with a new execution state. Alternatively, the application can

also abort and report to the user, that it was not able to recover from a previous state of a

crashed instance.

In order that the state recovery during the application start up can be used as described,

some additional steps have to be performed during application shutdown as well. If the

program exits from its normal execution routine (e.g. its main() function) it is necessary to

check whether a fault happened in the application, or if this is a normal shutdown. If no

fault happened, the state memory region can be deleted together with the backing storage

as described before. However, if a fault happened the state must not be deleted, since it

might be that the application wants to recover from the state again later. Hence, depending

on the used storage technique, the memory region should only be closed or unmapped, but

the backing storage must not be deleted (step (4) in the figure). Accordingly, this means that

there might be no additional step necessary during the shutdown if a fault happens. For

example, if memory-mapped files are used as backing storage, no additional steps are

necessary in a fault, because the file will be unmapped and closed by the operating system

already when the program is killed.

5

Defensive Publications Series, Art. 1058 [2018]

https://www.tdcommons.org/dpubs_series/1058

5

Live Upgrading to new Application Versions

Based on a similar approach as used for the crash recovery, one can also implement live-

upgrades of applications to newer version. This technique is especially interesting for

situations when one wants to deploy urgent security fixes for applications without causing

any downtime of the services that they provide. Application live-upgrading based on code-

data decoupling follows the scheme as outlined in Figure 4.

Immediately after the new version of the application starts, it searches and opens the state

memory region of the old version from the storage technique that is used in the background

to realize the code-data decoupling. Now that it has a reference to the state of the running

application, it sends a signal to the corresponding program (1). This signal causes the old

program version to stop its current execution and run some special handler code. As a very

first step, the signal handler code makes sure that the application is currently in a state at

which upgrading the application is possible and if not let the old application version

continues running until it eventually reaches a proper state (step (2a) in the figure). If the

handler code is sure that upgrading is finally possible it transfers as next step all other

external state (e.g. open files, network sockets, pipes with other programs, etc.) from the old

version to the new version of the program (marked with a (2b) in the figure), since this part

of the application state is not contained in the memory region but is crucial for proper

recovery in the new application version. To be able to migrate such state, corresponding

support must be available in the operating system. When the transfer of this external state is

finished, the old application version can close its reference to the now shared state memory

(a) Upgrade process for a new application

version.

(b) Upgrade process for the old application

version.

Figure 4 Execution schemes of an application that uses live-upgrading based on code-data

decoupling whereas (a) describes the steps done by the new version and (b) the steps of

the old version of the application.

6

Smejkal et al.: Application live-upgrading and error-recovery using code-data dec

Published by Technical Disclosure Commons, 2018

6

region and can exit. The new application version on the other side, which now has all the

necessary information can fully recover the whole state of the old program version (step (3)

in the figure) and can afterwards continue the execution where the old version stopped.

This described way to implement live-upgrading of an application requires, that the internal

data representation of the application did not change within the version update because the

new application version directly reuses the in-memory data of the old program version and

hence requires the exact same data structure layout. However, if the update contains a

change in a data structure, there are multiple ways to still be able to perform live upgrades.

One possibility is to add an additional translation phase in the recovery phase of the new

version of the application that translates all old data structures into the new layout.

Unfortunately, this can massively increase the time that the update requires which can be

problematic in some situations. Another possible solution is to not translate the data

structures in one step, but perform the translation on the fly whenever the data structure is

used and then perform another live-upgrade to another version that only understands the

new data structure layout once all old version were translated. This approach reduces the

cost that has to be paid during the first update but adds some constant overhead and makes

the application significantly more complicated.

The update process, especially the transfer of the external application state can be further

simplified if the operating system provides various buffering mechanisms. So is it for

example possible to not transfer DBus1 names or listening network sockets but instead open

them again in the new application version, if the kernel provides the appropriate buffering.

Decoupling of Shared Libraries and Transparent Restart

Another possible usage of code-data decoupling which is especially powerful if implemented

with multiple virtual address spaces (MVAS) is to decouple shared libraries from the actual

application address space. Instead of directly mapping the shared library code in the address

spaces of the application, the library is kept separated from the application and only made

accessible whenever the application executes a function provided by the library. A possible

implementation that uses this technique with the help of MVAS is shown in Figure 5. The

code and data of the shared library is managed in a dedicated virtual address space and only

a small trampoline code is actually mapped in the application address space.

1 DBus is a widely used inter-process communication technique for Linux desktop applications.

7

Defensive Publications Series, Art. 1058 [2018]

https://www.tdcommons.org/dpubs_series/1058

7

Whenever the application wants to use a function that is provided by the corresponding

shared library, the application will not call the library code directly but instead will end up in

a specialized wrapper function in the trampoline code ((1) in figure 6), that follows a simple

execution scheme as outlined in Figure 6.

As a first step, the wrapper function will check whether there is already the decoupled

library code available for the application. If the decoupling is realized with MVAS, the

trampoline code checks whether there is already a special library address space created and

Figure 5 Address space layout of an application with decoupled shared libraries.

Figure 6 Execution scheme for an example function foobar() provided by a decoupled library

using MVAS as storing technique.

8

Smejkal et al.: Application live-upgrading and error-recovery using code-data dec

Published by Technical Disclosure Commons, 2018

8

attached to the process. If not, the trampoline will create a new virtual address space2 (VAS)

for the library (step (2a) in the figure) and will initialize it by mapping the actual library code

into it and creating an empty data memory segment where the library can save internal

management data (2b). If the library address space already exists, or if it is properly

initialized, the trampoline code will eventually activate the VAS and thereby make the library

code accessible. Since the library code can now be accessed, the next step is to call the

actual function that provides the requested functionality (marked with (3) in the figure).

After this function finishes and hence before the control flow returns to the application, the

VAS of the library is again deactivated by the trampoline code, thereby making the library’s

code and data again inaccessible from the application’s address space.

If the operating system does not have support for multiple virtual address spaces, one can

achieve the same behavior with SHM or simple memory-mapped 1les by mapping and

unmapping the files or SHM regions in the wrapper functions in the trampoline code.

However, since the approach based on MVAS does not require the mapping and unmapping,

it can achieve much better performance. Especially if combined with tagging of translation

look-aside buffer entries and other techniques to enhance address translation, MVAS-based

library decoupling can achieve near native performance.

This decoupling of library code from the application address space has two very important

advantages. On the one side, since the library code is not accessible from the application

address space, there is a smaller attack vector for ROP (return-oriented-programming)

attacks. The other big advantage of this decoupling is, that one can transparently for the

application update the shared library to a new version. This can be achieved for example in

the trampoline code. Instead of simply activating the VAS of the shared library, the

trampoline code can additionally check if there is a new version of the library in the system

(e.g. with an important security fix) and accordingly update the code mappings. Thereby, the

shared library can be updated to a new version without any support or knowledge in the

application.

In general the whole shared library decoupling technique can be implemented

independently and without support of the application that uses the feature.

Advantage over Previous Solutions

The proposed disclosure contains various new techniques for application live upgrading and

recovery that provide multiple advantages over existing solutions. The live-upgrading

technique for example allows zero-downtime updates of applications without the need of

another external decoupling service such as a load balancer or a proxy- or buffering-

application. Instead the zero-downtime mechanism is directly implemented in the updated

application.

The crash recovery support that comes with the proposed code-data decoupling of

applications also has significant advantages over existing solutions. One advantage is for

2 For further information about VAS and how they interact with the address space of a process, please refer to
the disclosure for multiple virtual address spaces.

9

Defensive Publications Series, Art. 1058 [2018]

https://www.tdcommons.org/dpubs_series/1058

9

example, that with this technique it is not necessary to regularly create

snapshots/checkpoints/backups of the application, but the backup of the application data is

created implicitly because the data is kept in an independent storage. Furthermore, no

serialization or deserialization of backed-up data is necessary. Instead, the backup can be

used as is and if MVAS or SHM is used as backup storage technique, no access to slow disks

is necessary to restore the application.

Furthermore, the shared library decoupling also has multiple advantages over existing

solutions as also already mentioned in the corresponding section. With this technique, it is

for example possible to reduce the attack surface for ROP-based attacks on applications.

Another advantage of the shared library decoupling is the transparent library updating which

allows fast and simple deployment of security fixes while still maintaining a small overhead

during the executing of the application.

Authors:

Till Smejkal, Hewlett Packard Enterprise
Dejan Milojicic, Hewlett Packard Enterprise
Paolo Faraboschi, Hewlett Packard Enterprise

10

Smejkal et al.: Application live-upgrading and error-recovery using code-data dec

Published by Technical Disclosure Commons, 2018

	Technical Disclosure Commons
	February 21, 2018

	Application live-upgrading and error-recovery using code-data decoupling
	Till Smejkal
	Dejan Milojicic
	Paolo Faraboschi
	Recommended Citation

	tmp.1519197692.pdf.weBnS

