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Abstract 

Single crystal TiO2 nanotubes (TNTs) were prepared using modified hydrothermal method by treatment of 

prepared TiO2 with NaOH aqueous solution and characterized by the X-ray diffraction (XRD), high-resolution 

transmission electron microscopy (HRTEM), thermogravimetric (TG) analysis, BET surface area analysis, 

Raman spectroscopy, FTIR and UV–vis/DR spectroscopy. Detailed study for the effect of calcinations 

temperature on the morphology, textural properties, adsorption amount and photocatalytic activity of TiO2 

nanotubes was performed. The results showed that the calcinations temperature remarkably altered the phase 

composition. HRTEM showed that the high-purity nanotubes can be produced through the hydrothermal 

treatment of TiO2, calcinated at 250 ᵒC.  It was found that the obtained high-purity TNTs have outer diameter of 

the tubular structures around 15 nm and the length is around 70 nm, the wall of nanotube is 2 layers in one side 

whereas it is 3 layers in another side and the interlayer spacing is about 1–1.5 nm. The prepared TiO2 nanotubes 

show enhanced catalytic activity in photocatalytic phenol degradation compared with TiO2 nanoparticles which 

show lower catalytic activities.  
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1. INTRODUCTION 

Nanoscale structures have attracted immense interest in recent years. Especially, single crystal nanotubes are of 

particular interest owing to their unique atomic structures and great potential in electronic, optical, mechanical, 

and bioscience applications (Nalwa et al., 2000). In recent years, TiO2 nanotubes (TNTs), a novel single crystal 

nanostructured material, has been attracting considerable attention because of their superior properties relative to 

conventional bulk materials. The TNTs can be prepared by different methods, including the template method 

(Sun et al., 2011), anodic oxidation and the alkaline hydrothermal method (Ou and Lo, 2007). Among these 

approaches, the alkaline hydrothermal method reported by Kasuga et al. (1998, 1999) is a facile and 

environmentally friendly technology, which was obtained by the reaction of TiO2 powder with highly 

concentrated NaOH solution, subsequently treated with acid solution, Compared with the template method and 

anodic oxidation processes, hydrothermal method is easy to operate with high quality and high yield (Bavykin et 

al., 2006).  

The photocatalytic degradation is an important chemical process, which utilizes the photo-generated 

holes and electrons to decompose the organic pollutants. Titanium-based nanomaterials (Aqeel and Ali, 2013), 

i.e. titanium oxides (TiO2) and titanates, as the most promising photocatalysts, have obviously attracted extra 

attention in the degradation of dye pollutants originating from their unique properties of chemical inertness, high 

photoreactivity, non-toxicity, and photostability (Chen and Mao, 2007 & Zhang et al., 2010). The crystal phase 

and particle size of titanium-based photocatalysts are well known key factors to their photocatalytic activity.  

In this contribution, the high-yield TNTs with various morphologies were prepared by the modified 

hydrothermal method followed by well-controlled calcination. The effects of calcination temperature on the 

phase structure, crystallization, morphology and specific surface area were studied. The photocatalytic activities 

of the TNTs were evaluated by photocatalytic degradation of phenol. This work may provide a basis for the 

applications of TNTs material in environmental purification. 

 

2. EXPERIMENTAL 

2.1. Preparation of TiO2 nanoparticles 

All chemicals were of analytical grade and used without further purification.TiO2 nanoparticles were prepared by 

the method of hydrolysis as reported by (S.S. Kanmani and K. Ramachandran, 2012) with little modification.  

Titanium (IV) isopropoxide (Ti[OCH(CH3)2]4) was used as a starting precursor. Typically, 5 ml of 

Ti[OCH(CH3)2]4 was dissolved in 100 ml of isopropyl alcohol [(CH3)2CHOH] and solution was stirred 
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continuously for 1 h at room temperature. After stirring, 400 ml of deionized water was added suddenly to the 

above prepared mixture. The resultant solution was aged for 3 h, then centrifuged, washed several times with 

deionized water and ethanol and dried at 80 ᵒC over night. The preparation of the TiO2 nanoparticles was then 

completed by calcinating the precipitated particles at 450 ᵒC for 2 h in air.  

 

2.2. Preparation of TiO2 nanotubes (TNTs) 

TNTs were prepared by the modified hydrothermal method (Li 2009). In a typical run, 2 g TiO2 powder was 

added into 50 mL of 10 mol/L NaOH aqueous solution and the suspension system was stirred for 1 h at room 

temperature to form a suspension. Then, the mixture was transferred to a Teflon-lined stainless steel autoclave at 

130 ᵒC for 24.  After cooled naturally in air, the mixture was centrifuged at a speed of 4000 rpm and the 

precipitates were collected. The white powder was thoroughly washed with water then with 0.1M HCl, followed 

by drying at 80 ᵒC. Nanotube samples with different properties were prepared by calcining the as-prepared 

nanotube at corresponding temperatures for 4 h with an increment of 1 ᵒC/min. The resulting TiO2 nanotube 

catalysts are labeled as TNT-x (x denotes the calcination temperature, and TNT-un refers to the nanotube 

uncalcined). 

 

2.3. Characterization of TiO2 nanotube 

The studied samples were examined using X-ray powder diffractometer, Panalytical XPERT PRO MPD. Cu Kα 

radiation ( λ= 1.5418 A°) was used at a rating of 40 kV, 40 mA. The diffraction patterns were recorded at room 

temperature in the angular range of 4°-80° (2θ) with step size 0.02
o
 (2θ) and scan step time 0.4 (s). The 

crystalline phases formed on the carbon steel surface, in bothcases, were identified using the ICDD-PDF 

database. 

The thermogravimetric (TG) analysis of the sample was conducted on a Q600 DST simultaneous 

DSC/TGA apparatus. All runs were carried out at a heating rate of 10ºC/min in the temperature range from room 

temperature to 1000ºC.  

High Resolution Transmission Electron Microscopic (HRTEM) images were obtained with a JEOL-

1400 TEM at 200 kV.  

The specific surface areas of the samples were determined by N2 adsorption-desorption isotherms at 

liquid nitrogen temperature (-196 ºC) using Quantachrome Nova 3200 S automates gas sorption apparatus.  

Raman spectra of samples were recorded on the dispersive Raman microscope Sentera Bruker 

instrument at laser wave length 532 nm and power 10 mW. 

Fourier transform infrared spectroscopy (FT-IR) spectra on the pellets of the samples were recorded on 

a Perkin-Elmer FT-IR spectrometer. 

 UV–VIS/DR spectra were recorded using Jasco V 530 spectrometer (Japan) equipped with the 

integrating sphere accessory for diffuse reflectance spectra.  

X-ray photoelectron spectroscopy (XPS) was recorded with Perkin Elmer PHI 5000C ESCA System 

with Al Kα radiation operated at 250 W. 

 

2.4. Photocatalytic reactions 

Photocatalytic reactions were conducted in a commercial photo-reactor equipped with a 500 ml cylindrical Pyrex 

vessel irradiated directly by a high pressure mercury lamp (125 W). For photocatalytic phenol degradation, 0.2 g 

of the catalyst was mixed with 500 ml of 50mg/l phenol solution which was further stirred in the dark for 30 min 

to reach the adsorption equilibrium prior to the photocatalytic test. During the photocatalytic reaction, samples 

were collected at selected time intervals and the catalyst particles were removed by centrifugation. The residual 

phenol concentration was determined using HPLC (Agilent 1200, USA), equipped with an ultraviolet (UV) 

detector and a C18 reversed phase column (250mm×4.5mm, Agilent, USA) at 30 ᵒC. The mobile phase consists 

of water and acetonitrile (40/60, v/v) with a flow rate of 1.0 ml min
−1

. 

 

3. RESULTS AND DUSCUSSION 

3.1. Structural characterization 

The X-ray diffraction patterns of prepared TiO2 nanoparticles calcined at 450 ᵒC for 2 h, TiO2 nanotubes 

uncalcined and calcined at different temperatures for 4 h, shown in fig. 1,.  can be seen that the calcination 

temperatures obviously influence on the crystallization and phase structures of the TNTs samples. For 250 and 

350 ᵒC calcined samples, weak diffraction peaks were observed with 2Ɵ at 24.54ᵒ, 28.4ᵒ and 48.1ᵒ, attributed to 

single crystal monoclinic titanate H2Ti3O7·xH2O (Lin et al. 2008). The generation of titanate under alkaline 

hydrothermal conditions is based on a dissolution recrystallization mechanism, by which TiO2 precursor is 

irreversibly converted into soluble titanate species and these species are further thermodynamically deposited 

and crystallized into lamellar titanate (Morgado et al. 2007 & Wu et al. 2006). With increasing calcination 

temperatures (from 350 to 650 ᵒC), also for TiO2 nanoparticles, new diffraction peaks were observed at 25.5◦, 
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37.8◦, 48.2◦, 54.2 and 55.4◦, assigned to metastable polymorph TiO2 (Feist et al. 1988). XRD peak intensities of 

anatase steadily become stronger and the width of XRD diffraction peaks of anatase becomes narrower, 

indicating the formation of greater TiO2 crystallites and enhancement of crystallization. The crystallinity of TiO2 

was quantitatively evaluated via the intensity of the first diffraction peak of the anatase.  

 
Fig. 1: XRD patterns of prepared TiO2 nanoparticles (TNPs) and TiO2 nanotubes (TNTs) 

 

Fig. 2 displays HRTEM images and electron diffraction patterns of the prepared TiO2 nanoparticles, TiO2 

nanotubes uncalcined and calcined at different temperatures for 4 h further confirm that single nanoparticle is 

single crystal. It can be seen that the high-purity nanotubes were produced through the hydrothermal treatment of 

TiO2, the image of TNT calcinated at 250 ᵒC, the outer diameter of the tubular structures was around 15 nm and 

the length was around 70 nm, the wall of nanotube was two layers in one side and three layers in another side, it 

can be calculated that the interlayer spacing was about 1–1.5 nm. The nanotubes are flexible and can be well-

dispersed, TNT-350 was still pure nanotube, while for TNT-450, partial shorter tubular structure was presented, 

and in TNT-550 inner diameter of TNT decreased and many rod-like materials were formed. In TNT-650, 

almost all nanotubes transformed to rod-like particles and many particles could be aggregated together form 

polycrystalline nanoparticle.  
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Fig. 2: HRTEM images and electron diffraction patterns of prepared TiO2 nanoparticles (TNPs) and TiO2 

nanotubes (TNTs) 
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Fig. 3 showed the TG curves of the prepared TiO2 nanoparticles uncalcined and calcined at 450 ºC for 2 h, TiO2 

nanotubes calcined at 250 and 650 ºC for 4 h, the total weight losses of uncalcined TNP and TNT-250 in the 

temperature of 50–300 ◦C was about 10 and 20% respectively, which was ascribed to the water desorption. The 

higher weight losses of TNT for interlayer space of TNTs wall, and the higher calcination temperature 650 ºC for 

4 h of TNTs resulted the disappear of interlayer space of TNTs where all nanotubes transformed to rod-like 

particles as agreement with TEM imges. 
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Fig. 3: the TG curves of prepared TNPs and TNTs 

 

Fig.4 showed the Raman spectra of TNP and TNTs. The observed Raman peaks at 144 cm
−1

, 198 cm
−1

, 400 

cm
−1

, 519 cm
−1

, 640 cm
−1

 were attributed to the typical anatase active modes, and the bands in the 275 cm
−1

, 448 

cm
−1

 and 668 cm
−1

 were assigned to the titanate nanotubes (Qian, 2005). According to Cortés-Jácome (2007), the 

band at 917 cm
−1

 was related to Ti–O–Na vibration in the interlayer regions of nanotube walls, in our Raman 

spectra, the peak at 917 cm
−1

 was not detected, indicative of the thorough exchange of H
+
 with Na

+
 in the process 

of acid-exchange. For the TNT-un and TNT-250, there were pure titanate, and for TNT-350 the spectra of 

anatase began to appear, therefore the TNT-350 contain mixed phase of titanate and anatase, which cannot be 

distinguished in XRD patterns. For TNT-450, the intensity of anatase peak increased rapidly. Further increase 

the calcination temperature from 550 to 650 ᵒC, the intensity of anatase peak enhanced evidently, reflecting the 

crystalline degree became better. 
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Fig. 4: Raman spectra of prepared TNP and TNTs. 
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Fig. 5 depicted the dependence of specific surface area of TNTs on calcination temperature. The TNT uncalcined 

own a high surface area of 267 m
2
/g, and the calcination under 350 ᵒC did not cause the change of surface area, 

which indicated that the tubular structure of TNT was stable under the calcination temperature of 350 ᵒC. 

Increasing the calcination temperature from 450 to 650 ᵒC, the surface area decreased sharply (S450 = 195.5 

m
2
/g, S550 = 124.5 m

2
/g, S650 = 103.3 m

2
/g), note that the specific surface area of prepared TiO2 nanoparticles 

calcined at 450 ºC for 2 h about 200 m
2
/g, and the structure of nanotube enhance the surface area of prepared 

TiO2 nanoparticles markedly. 
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Fig. 5: Dependence of specific surface area of TNTs on calcination temperature. 

 

Fig. 6 presents the FT-IR spectra of TNPs and TNTs obtained under different calcination temperature. All of the 

presented spectra exhibit, in the n(OH) region, one band with a maximum at 3585–3700 cm
–1

, which 

characterize the stretching vibrations of Ti
4+

–OH surface hydroxyl groups (Qamar et. al. 2008). The broad band 

(from about 800 till 400 cm
–1

) was assigned to Ti–O and Ti–O–Ti skeletal frequency region. The bands observed 

at 1630–1640 cm
–1

 can be assigned to molecular water bending mode (Maira et. al. 2001). In the range of 3300–

3500 cm
–1

 the bands due to adsorbed water and hydroxyl groups can be observed in all of the spectra. 

The intensity gradually decreases as the temperature increases. It is noted that, this band absorption of TNT-550 

and TNT-650 is much weaker than that of the others samples. The above facts indicate higher temperature 

results in the loss of surface hydroxyl groups, which have been recognized to play an important role in the 

photocatalytic process. The hydroxyl groups capture holes on illuminated photocatalysts and form active 

hydroxyl radicals, and then oxidize the adsorbed molecules.  
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Fig. 7: FT-IR spectra of TNPs and TNTs obtained under different calcination temperature. 
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Fig. 8 presents UV–vis diffuse reflectance spectra of TNP-450, TNT-350 and TNT-450. The TNTs spectra, 

exhibit a similar course and are blue shifted for about 20 nm relative to TNPs. This indicates the increase of the 

band gap energy. The Eg values were calculated from the (F(R)hυ)
1/2

 versus hυ plots, where F(R)=(1-R)/2R 

(Todorova et. al. 2006). The absorption edges were found to be 378 nm, which value corresponds to the band 

gap energy of Eg=3.28eV for TNT.The absorption edge and Eg determined for TNP-450 were 399 nm and 3.10 

eV, respectively. This value is consistent with the already published results (Todorova et. al. 2008). The 

literature data Wang et. al, (2006) concerning band gap of titanate nanotubes are in consistent. Some researchers 

found that Eg of TNT was higher than that of anatase, whereas others reported in verse relation. For example, Yu 

and Yu, (2006) reported that Eg of TNTs prepared from rutile ranged from 3.03 to 3.15 eV, depending on the 

hydrothermal treatment time. Such low values of Eg were associated with a high rutile content in the prepared 

samples. Khan et. al., (2009) found the band gap of 3.1 eV, whereas Wang et. al., (2006) determined the 

Eg=3.6eV. Bavykin et. al. (2005 & 2004) reported Eg value as high as 3.87eV. 
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Fig. 8: UV–vis diffuse reflectance spectra of TNP-450, TNT-350 and TNT-450. 

 

Fig. 9 A shows the Ti 2p and O 1s XPS spectra of TNPs and TNTs obtained under different calcination 

temperatures. The signal of TNT-un, TNT-250 and TNT-350 can be fitted with two components, one at 458.38 

eV for the Ti 2p3/2 and another one at 464.18 eV for the Ti 2p1/2, corresponding to the Ti 2p spin-orbit 

components of Ti(IV) surface species. In comparison with TNP-450, TNTs samples at high calcination 

temperatures show a shift of Ti 2p (IV) binding energies of 0.3, 0.5, and 0.6 eV for calcination temperatures of 

450, 550, and 650 °C, respectively. This shift to higher binding energy could be explained by the increase in 

effective positive charge around Ti(IV) surface species. According to the literature, the typical Ti 2p bands of 

pure titania are located at 458.6 and 463.8 eV (Kraeutler and Bard, 1978). This negative shift may be attributed 

due to the presence of residual sodium in titanate sample. The electron density on the Ti is increased because of 

the presence of sodium ions carrying positive charge, as a result of formation of linkages between sodium and 

titania as Na O Ti. Shifts in binding energies can be caused by changes in the bond environment (i.e. strength of 

bond). It does represent the strengthening and shortening of the Ti O bond in the titanate crystal structure (Guo et. 

al. 2007) as compared to TiO2. Additionally, calculated from the results of XPS spectra for the O1s region. The 

individual peaks of O 1s at 529.88 eV and Ti 2p at 458.38 and 464.18 eV can be clearly seen in the high-

resolution spectra, which mean that chemical state of the sample is Ti
4+

 bonded with oxygen (Ti
4+

–O). In the 

meantime, the spectra show a trace amount of carbon (C 1s), which should be ascribed to the adventitious 

hydrocarbon from the XPS sample preparation. 
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Fig. 9: The Ti 2p and O 1s XPS spectra of TNPs and TNTs obtained under different calcination temperatures. 

 

3.2. Photocatalytic Activity 

The photocatalytic degradation of aqueous phenol over the catalysts is compiled in Fig. 10. For phenol 

degradation overall photocatalysts, aqueous phenol concentration continuously diminished with UV irradiation, 

indicating that the synthesized TiO2 nanoparticles and TiO2 nanotubes are effective photocatalysts. However, 

phenol degradation efficiency varied with the structural properties of the catalysts. After UV irradiation for 300 

min, phenol removal were found to be 42.5%, 49.3%, 60.9% and 65.2% for TNP, TNT-250, TNT-350 and TNT-

450 reflecting the highest photocatalytic activity of TNT-450 catalysts examined.  

In principle, the photocatalytic activity is closely linked to the structural properties of the photocatalyst, 

such as crystallinity, crystalline phase composition and specific surface area. The higher phenol degradation rate 

of TNT-450 compared to TNT-250 is attributed to the higher photocatalytic activity of its titanate structure 

(Costa and Prado, 2009).  
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Fig. 10: The photocatalytic degradation of aqueous phenol over the catalysts. 

 

4. CONCLUSIONS 

Single crystal titanated was successfully prepared using modified hydrothermal method. Results obtained reveal 

that the calcination temperatures has a great influence on the physicochemical properties and photocatalytic 

activity of the TiO2 calcinated at lower than 450 °C, the obtained titanate possesses much higher specific area 

than TNPs. Especially TNTs at 450 °C sample is the most efficient photocatalyst in this study. The superior 

activity can be attributed to the crystal structure, the high surface area and large pore volume, the abundant 

hydroxyl groups.  Calcinated at high temperature (550 °C or 650 °C), the obtained samples show the poorer 

photocatalytic activity. 
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