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Intelligent assistant for music practice 

Abstract 

Generally, the present disclosure is directed to techniques to automatically provide 

feedback and suggestions to musicians. In particular, in some implementations, the systems and 

methods of the present disclosure can include or otherwise leverage one or more machine-

learned models to provide real-time feedback to musicians based on audio and/or video of the 

musician playing music. The techniques of this disclosure use various input features, e.g., the 

musician’s practice piece; references from a database of musical scores, data from different 

sensors, e.g., microphones, cameras, etc. to analyze the musician’s playing and provide real-time 

feedback or suggestions for corrections to be made, e.g., changing the tempo, playing a sharp or 

flat note (acting as an intelligent tuner), suggestions of practice pieces, etc. 

Keywords 

music practice; music teacher; software teacher; software assistant 

Background

Feedback during practice is an important mechanism in learning music. When a musician 

practices music alone, no immediate third-party feedback is available for the practice 

performance. Music teachers play an important role during practice sessions by providing instant 

feedback. However, many aspiring musicians don’t have regular access to a human teacher.  

Human feedback can include notifying the musician of incorrect or inconsistent tempo, 

playing out of tune, suggestions that the musician increase or decrease the intensity of the sound, 

providing technical feedback on how to physically play the instrument, e.g., how to attack notes, 

how to produce slurs, etc. The feedback can also include commenting on musicality, e.g., a 

playing style that is appropriate to the period of the musical piece. Further, a teacher can also 
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suggest material to further improve the musician’s playing, e.g., recordings to imitate or 

technical etudes to hone a particular skill. 

To assist with music practice, musicians often use two devices during practice: a tuner 

and a metronome. For example, these devices can be dedicated hardware devices, or be provided 

as software applications for mobile devices. Musicians can also employ music players, e.g., CD 

or digital music players, to play backing tracks, reference recordings, etc.  Software tools that 

synthesize music from a score representation or a midi file are also available. While useful 

during practice of music, none of these technologies are capable of providing feedback to a 

musician during practice.

Description 

As described above, the present disclosure is directed to providing real-time feedback to 

musicians while they play music. In particular, in some implementations, the systems and 

methods of the present disclosure can include or otherwise leverage one or more machine-

learned models to provide real-time feedback to musicians based on the musician’s playing. 

As one example, Figure 1 illustrates a block diagram of the techniques of this disclosure. 

The music practice assistant (106) takes in an audio input (102) of a practice piece (100) as 

played by the musician and a video input (104) as extracted from a camera, when used. In this 

example implementation, the music practice assistant references a database of musical scores 

(108) and follows the musician’s progress through the piece as the musician practices. For 

example, the music practice assistant recognizes the features of the musician’s playing such as a 

B, a E, and a slur between them, and compares it to the reference score. It then annotates the 

score with notes about the musician’s playing, e.g., the E should have been an F#, and it should 

have been articulated instead of slurred. 
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In some implementations, as depicted in Figure 1, the music practice assistant connects to 

a database of performances (110) and interpretations of the piece that the musician is practicing, 

and suggests pieces to listen to. The music practice assistant, using the inputs as described above, 

provides as output feedback (118) to the musician. The outputs may include an intelligent tuner 

(112), suggested exercises (114) for the musician’s practice, suggested corrections (116), etc. 

Suggested exercises may include videos of well-known artists and other music videos or audios, 

e.g., of other music students. Over time, the music practice assistant classifies and categorizes 

the mistakes the musician makes consistently, and offers exercises, e.g., warm-up exercises, 

patterns, etudes, etc., designed to address the problem the musician is experiencing, just as a 

teacher physically present would.  

In some implementations, where a device is equipped with capabilities of transmitting 

video signals, the techniques of this disclosure also offers the feedback a teacher would 

regarding a musician’s posture, hand position on the instrument, movement during playing, etc. 

For example, a piano player may tense the shoulders during a difficult passage; a clarinetist 

might be reaching for some of the keys in a way that strains the wrists, etc. The music practice 

assistant detects problems such as the ones as described above and offers reminders and 

suggestions to improve. In some implementations, when using camera signal, the music practice 

assistant is able to identify the fingerings that the musician is using and suggest other fingerings, 

if needed. 

In some implementations, when the input is polyphonic music (i.e. music with more than 

one simultaneous note, like piano), the techniques of this disclosure recognizes harmonic and 

melodic patterns, and presents the analysis to the musician. The theoretical analysis of the music 

helps the musician both with artistic interpretation and memorization. 
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In some implementations, the beginner and advanced musicians do not receive the same 

feedback from the music assistant when they play, since they may not have the same level of 

performance. From the analysis of the performances of the musician the system establishes their 

level, and makes appropriate suggestions based on it. Also, the system learns when the musician 

is improving, and adapts the level of their feedback to that. In this sense, the system is 

personalizable and completely customizable.  

In order to make these suggestions, several machine learning models are trained, based 

on acoustic features (extracted from the music played by the musician), and additionally from 

video features (extracted from a camera that records the musician). Then, the machine learning 

models analyze in real time the musical performance of the musician and compare it against a 

canonical performance according to the music score and against other performances of the same 

musical piece or fragment that exist in repositories such as an audio and/or video music 

streaming application.  

In some implementations, the analysis of the differences, as detected by the machine 

learning models, is presented in real-time to the user visually, e.g., marking in red in a score the 

things that they played incorrectly; giving statistics on how correct the musician was; etc. In 

some implementations, the analysis may enable a gamification component, in which the 

musician can get badges or unblock achievements when they improve their performance or 

master some skill. 

In some implementations, the sensors, e.g., camera, microphone, etc., are embedded 

within a portable electronic device, e.g., smartphone, tablet computer, wearable computer, etc. 

All or part of the machine learning system runs on the portable electronic device.   
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 Techniques of this disclosure are advantageously used in educational settings, in order to 

provide human teacher-like feedback and suggestions to students as they practice. For example, 

the techniques can be used to scale the number of students served and the quantity of feedback. 

The techniques can be used to assist human teachers, or assist students in the absence of human 

teachers. The techniques are also applicable in non-classroom settings, e.g., self-study, practice 

for advanced or professional musicians, etc.  

Figure 2A depicts a block diagram of an example machine-learned model according to 

example implementations of the present disclosure. As illustrated in Figure 2A, in some 

implementations, the machine-learned model is trained to receive input data of one or more 

types, e.g., audio data (as extracted from the microphone), video data (as extracted from the 

camera), etc., and, in response, provide output data of one or more types, e.g., corrections to the 

music piece played; suggested practice pieces; tuning, etc. Thus, Figure 2A illustrates the 

machine-learned model performing inference. 

In some implementations, the input data can include one or more features that are 

associated with an instance or an example. In some implementations, the one or more features 

associated with the instance or example can be organized into a feature vector. In some 

implementations, the output data can include one or more predictions. Predictions can also be 

referred to as inferences. Thus, given features associated with a particular instance, the machine-

learned model can output a prediction for such instance based on the features. 

The machine-learned model can be or include one or more of various different types of 

machine-learned models. In particular, in some implementations, the machine-learned model can 

perform classification, regression, clustering, anomaly detection, recommendation generation, 

and/or other tasks. 
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In some implementations, the machine-learned model can perform various types of 

classification based on the input data. For example, the machine-learned model can perform 

binary classification or multiclass classification. In binary classification, the output data can 

include a classification of the input data into one of two different classes. In multiclass 

classification, the output data can include a classification of the input data into one (or more) of 

more than two classes. The classifications can be single label or multi-label.  

In some implementations, the machine-learned model can perform discrete categorical 

classification in which the input data is simply classified into one or more classes or categories. 

In some implementations, the machine-learned model can perform classification in which 

the machine-learned model provides, for each of one or more classes, a numerical value 

descriptive of a degree to which it is believed that the input data should be classified into the 

corresponding class. In some instances, the numerical values provided by the machine-learned 

model can be referred to as “confidence scores” that are indicative of a respective confidence 

associated with classification of the input into the respective class. In some implementations, the 

confidence scores can be compared to one or more thresholds to render a discrete categorical 

prediction. In some implementations, only a certain number of classes (e.g., one) with the 

relatively largest confidence scores can be selected to render a discrete categorical prediction. 

In some implementations, the machine-learned model can provide a probabilistic 

classification. For example, the machine-learned model can be able to predict, given a sample 

input, a probability distribution over a set of classes. Thus, rather than outputting only the most 

likely class to which the sample input should belong, the machine-learned model can output, for 

each class, a probability that the sample input belongs to such class. In some implementations, 

the probability distribution over all possible classes can sum to one. In some implementations, a 
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softmax function or layer can be used to squash a set of real values respectively associated with 

the possible classes to a set of real values in the range (0, 1) that sum to one.  

In some implementations, the probabilities provided by the probability distribution can be 

compared to one or more thresholds to render a discrete categorical prediction. In some 

implementations, only a certain number of classes (e.g., one) with the relatively largest predicted 

probability can be selected to render a discrete categorical prediction.  

In some implementations in which the machine-learned model performs classification, the 

machine-learned model can be trained using supervised learning techniques. For example, the 

machine-learned model can be trained on a training dataset that includes training examples 

labeled as belonging (or not belonging) to one or more classes. Further details regarding 

supervised training techniques are provided below. 

In some implementations, the machine-learned model can perform regression to provide 

output data in the form of a continuous numeric value. The continuous numeric value can 

correspond to any number of different metrics or numeric representations, including, for 

example, currency values, scores, or other numeric representations. As examples, the machine-

learned model can perform linear regression, polynomial regression, or nonlinear regression. As 

examples, the machine-learned model can perform simple regression or multiple regression. As 

described above, in some implementations, a softmax function or layer can be used to squash a 

set of real values respectively associated with two or more possible classes to a set of real values 

in the range (0, 1) that sum to one. 

In some implementations, the machine-learned model can perform various types of 

clustering. For example, the machine-learned model can identify one or more previously-defined 

clusters to which the input data most likely corresponds. As another example, the machine-
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learned model can identify one or more clusters within the input data. That is, in instances in 

which the input data includes multiple objects, documents, or other entities, the machine-learned 

model can sort the multiple entities included in the input data into a number of clusters. In some 

implementations in which the machine-learned model performs clustering, the machine-learned 

model can be trained using unsupervised learning techniques. 

In some implementations, the machine-learned model can perform anomaly detection or 

outlier detection. For example, the machine-learned model can identify input data that does not 

conform to an expected pattern or other characteristic (e.g., as previously observed from previous 

input data). As examples, the anomaly detection can be used for fraud detection or system failure 

detection. 

In some implementations, the machine-learned model can provide output data in the form 

of one or more recommendations. For example, the machine-learned model can be included in a 

recommendation system or engine. As an example, given input data that describes previous 

outcomes for certain entities (e.g., a score, ranking, or rating indicative of an amount of success 

or enjoyment), the machine-learned model can output a suggestion or recommendation of one or 

more additional entities that, based on the previous outcomes, are expected to have a desired 

outcome (e.g., elicit a score, ranking, or rating indicative of success or enjoyment). As one 

example, given input data descriptive of a number of products purchased or rated highly by a 

user, a recommendation system can output a suggestion or recommendation of an additional 

product that the user might enjoy or wish to purchase. 

In some implementations, the machine-learned model can act as an agent within an 

environment. For example, the machine-learned model can be trained using reinforcement 

learning, which will be discussed in further detail below. 
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In some implementations, the machine-learned model can be a parametric model while, in 

other implementations, the machine-learned model can be a non-parametric model. In some 

implementations, the machine-learned model can be a linear model while, in other 

implementations, the machine-learned model can be a non-linear model.  

As described above, the machine-learned model can be or include one or more of various 

different types of machine-learned models. Examples of such different types of machine-learned 

models are provided below for illustration. One or more of the example models described below 

can be used (e.g., combined) to provide the output data in response to the input data. Additional 

models beyond the example models provided below can be used as well.  

In some implementations, the machine-learned model can be or include one or more 

classifier models such as, for example, linear classification models; quadratic classification 

models; etc. 

In some implementations, the machine-learned model can be or include one or more 

regression models such as, for example, simple linear regression models; multiple linear 

regression models; logistic regression models; stepwise regression models; multivariate adaptive 

regression splines; locally estimated scatterplot smoothing models; etc. 

In some implementations, the machine-learned model can be or include one or more 

decision tree-based models such as, for example, classification and/or regression trees; iterative 

dichotomiser 3 decision trees; C4.5 decision trees; chi-squared automatic interaction detection 

decision trees; decision stumps; conditional decision trees; etc. 

In some implementations, the machine-learned model can be or include one or more 

kernel machines. In some implementations, the machine-learned model can be or include one or 

more support vector machines. 
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In some implementations, the machine-learned model can be or include one or more 

instance-based learning models such as, for example, learning vector quantization models; self-

organizing map models; locally weighted learning models; etc. 

In some implementations, the machine-learned model can be or include one or more 

nearest neighbor models such as, for example, k-nearest neighbor classifications models; k-

nearest neighbors regression models; etc. 

In some implementations, the machine-learned model can be or include one or more 

Bayesian models such as, for example, naïve Bayes models; Gaussian naïve Bayes models; 

multinomial naïve Bayes models; averaged one-dependence estimators; Bayesian networks; 

Bayesian belief networks; hidden Markov models; etc. 

In some implementations, the machine-learned model can be or include one or more 

artificial neural networks (also referred to simply as neural networks). A neural network can 

include a group of connected nodes, which also can be referred to as neurons or perceptrons. A 

neural network can be organized into one or more layers. Neural networks that include multiple 

layers can be referred to as “deep” networks. A deep network can include an input layer, an 

output layer, and one or more hidden layers positioned between the input layer and the output 

layer. The nodes of the neural network can be connected or non-fully connected. 

In some implementations, the machine-learned model can be or include one or more feed 

forward neural networks. In feed forward networks, the connections between nodes do not form 

a cycle. For example, each connection can connect a node from an earlier layer to a node from a 

later layer. 

In some instances, the machine-learned model can be or include one or more recurrent 

neural networks. In some instances, at least some of the nodes of a recurrent neural network can 
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form a cycle. Recurrent neural networks can be especially useful for processing input data that is 

sequential in nature. In particular, in some instances, a recurrent neural network can pass or 

retain information from a previous portion of the input data sequence to a subsequent portion of 

the input data sequence through the use of recurrent or directed cyclical node connections. 

As one example, sequential input data can include time-series data (e.g., sensor data 

versus time or imagery captured at different times). For example, a recurrent neural network can 

analyze sensor data versus time to detect or predict a swipe direction, to perform handwriting 

recognition, etc. As another example, sequential input data can include words in a sentence (e.g., 

for natural language processing, speech detection or processing, etc.); notes in a musical 

composition; sequential actions taken by a user (e.g., to detect or predict sequential application 

usage); sequential object states; etc. 

Example recurrent neural networks include long short-term (LSTM) recurrent neural 

networks; gated recurrent units; bi-direction recurrent neural networks; continuous time recurrent 

neural networks; neural history compressors; echo state networks; Elman networks; Jordan 

networks; recursive neural networks; Hopfield networks; fully recurrent networks; sequence-to-

sequence configurations; etc. 

In some implementations, the machine-learned model can be or include one or more 

convolutional neural networks. In some instances, a convolutional neural network can include 

one or more convolutional layers that perform convolutions over input data using learned filters. 

Filters can also be referred to as kernels. Convolutional neural networks can be especially useful 

for vision problems such as when the input data includes imagery such as still images or video. 

However, convolutional neural networks can also be applied for natural language processing.  

In some implementations, the machine-learned model can be or include one or more 
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generative networks such as, for example, generative adversarial networks. Generative networks 

can be used to generate new data such as new images or other content. 

In some implementations, the machine-learned model can be or include an autoencoder. 

In some instances, the aim of an autoencoder is to learn a representation (e.g., a lower-

dimensional encoding) for a set of data, typically for the purpose of dimensionality reduction. 

For example, in some instances, an autoencoder can seek to encode the input data and then 

provide output data that reconstructs the input data from the encoding. Recently, the autoencoder 

concept has become more widely used for learning generative models of data. In some instances, 

the autoencoder can include additional losses beyond reconstructing the input data. 

In some implementations, the machine-learned model can be or include one or more other 

forms of artificial neural networks such as, for example, deep Boltzmann machines; deep belief 

networks; stacked autoencoders; etc. Any of the neural networks described herein can be 

combined (e.g., stacked) to form more complex networks. 

In some implementations, one or more neural networks can be used to provide an 

embedding based on the input data. For example, the embedding can be a representation of 

knowledge abstracted from the input data into one or more learned dimensions. In some 

instances, embeddings can be a useful source for identifying related entities. In some instances, 

embeddings can be extracted from the output of the network, while in other instances 

embeddings can be extracted from any hidden node or layer of the network (e.g., a close to final 

but not final layer of the network). Embeddings can be useful for performing auto suggest next 

video, product suggestion, entity or object recognition, etc. In some instances, embeddings be 

useful inputs for downstream models. For example, embeddings can be useful to generalize input 

data (e.g., search queries) for a downstream model or processing system. 
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In some implementations, the machine-learned model can include one or more clustering 

models such as, for example, k-means clustering models; k-medians clustering models; 

expectation maximization models; hierarchical clustering models; etc.  

In some implementations, the machine-learned model can perform one or more 

dimensionality reduction techniques such as, for example, principal component analysis; kernel 

principal component analysis; graph-based kernel principal component analysis; principal 

component regression; partial least squares regression; Sammon mapping; multidimensional 

scaling; projection pursuit; linear discriminant analysis; mixture discriminant analysis; quadratic 

discriminant analysis; generalized discriminant analysis; flexible discriminant analysis; 

autoencoding; etc. 

In some implementations, the machine-learned model can perform or be subjected to one 

or more reinforcement learning techniques such as Markov decision processes; dynamic 

programming; Q functions or Q-learning; value function approaches; deep Q-networks; 

differentiable neural computers; asynchronous advantage actor-critics; deterministic policy 

gradient; etc. 

In some implementations, the machine-learned model can be an autoregressive model. In 

some instances, an autoregressive model can specify that the output data depends linearly on its 

own previous values and on a stochastic term. In some instances, an autoregressive model can 

take the form of a stochastic difference equation. One example autoregressive model is 

WaveNet, which is a generative model for raw audio. 

In some implementations, the machine-learned model can include or form part of a 

multiple model ensemble. As one example, bootstrap aggregating can be performed, which can 

also be referred to as “bagging.” In bootstrap aggregating, a training dataset is split into a number 
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of subsets (e.g., through random sampling with replacement) and a plurality of models are 

respectively trained on the number of subsets. At inference time, respective outputs of the 

plurality of models can be combined (e.g., through averaging, voting, or other techniques) and 

used as the output of the ensemble. 

One example model ensemble is a random forest, which can also be referred to as a 

random decision forest. Random forests are an ensemble learning method for classification, 

regression, and other tasks. Random forests are generated by producing a plurality of decision 

trees at training time. In some instances, at inference time, the class that is the mode of the 

classes (classification) or the mean prediction (regression) of the individual trees can be used as 

the output of the forest. Random decision forests can correct for decision trees' tendency to 

overfit their training set. 

Another example ensemble technique is stacking, which can, in some instances, be 

referred to as stacked generalization. Stacking includes training a combiner model to blend or 

otherwise combine the predictions of several other machine-learned models. Thus, a plurality of 

machine-learned models (e.g., of same or different type) can be trained based on training data. In 

addition, a combiner model can be trained to take the predictions from the other machine-learned 

models as inputs and, in response, produce a final inference or prediction. In some instances, a 

single-layer logistic regression model can be used as the combiner model. 

Another example ensemble technique is boosting. Boosting can include incrementally 

building an ensemble by iteratively training weak models and then adding to a final strong 

model. For example, in some instances, each new model can be trained to emphasize the training 

examples that previous models misinterpreted (e.g., misclassified). For example, a weight 

associated with each of such misinterpreted examples can be increased. One common 
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implementation of boosting is AdaBoost, which can also be referred to as Adaptive Boosting. 

Other example boosting techniques include LPBoost; TotalBoost; BrownBoost; xgboost; 

MadaBoost, LogitBoost, gradient boosting; etc. 

Furthermore, any of the models described above (e.g., regression models and artificial 

neural networks) can be combined to form an ensemble. As an example, an ensemble can include 

a top level machine-learned model or a heuristic function to combine and/or weight the outputs 

of the models that form the ensemble. 

In some implementations, multiple machine-learned models (e.g., that form an ensemble 

can be linked and trained jointly (e.g., through back propagation of errors sequentially through 

the model ensemble). However, in some implementations, only a subset (e.g., one) of the jointly 

trained models is used for inference. 

In some implementations, the machine-learned model can be used to preprocess the input 

data for subsequent input into another model. For example, the machine-learned model can 

perform dimensionality reduction techniques and embeddings (e.g., matrix factorization, 

principal components analysis, singular value decomposition, word2vec/GLOVE, and/or related 

approaches); clustering; and even classification and regression for downstream consumption. 

Many of these techniques have been discussed above and will be further discussed below. 

Referring again to Figure 2A, and as discussed above, the machine-learned model can be 

trained or otherwise configured to receive the input data and, in response, provide the output 

data. The input data can include different types, forms, or variations of input data. As examples, 

in various implementations, the input data can include a musical piece, e.g., acoustic input (as 

extracted from a microphone); video input (as extracted from a camera); etc. 

In some implementations, the machine-learned model can receive and use the input data 
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in its raw form. In some implementations, the raw input data can be preprocessed. Thus, in 

addition or alternatively to the raw input data, the machine-learned model can receive and use the 

preprocessed input data. 

In some implementations, preprocessing the input data can include extracting one or more 

additional features from the raw input data. For example, feature extraction techniques can be 

applied to the input data to generate one or more new, additional features. Example feature 

extraction techniques include edge detection; corner detection; blob detection; ridge detection; 

scale-invariant feature transform; motion detection; optical flow; Hough transform; etc. 

In some implementations, the extracted features can include or be derived from 

transformations of the input data into other domains and/or dimensions. As an example, the 

extracted features can include or be derived from transformations of the input data into the 

frequency domain. For example, wavelet transformations and/or fast Fourier transforms can be 

performed on the input data to generate additional features. 

In some implementations, the extracted features can include statistics calculated from the 

input data or certain portions or dimensions of the input data. Example statistics include the 

mode, mean, maximum, minimum, or other metrics of the input data or portions thereof. 

In some implementations, as described above, the input data can be sequential in nature. 

In some instances, the sequential input data can be generated by sampling or otherwise 

segmenting a stream of input data. As one example, frames can be extracted from a video. In 

some implementations, sequential data can be made non-sequential through summarization. 

As another example preprocessing technique, portions of the input data can be imputed. 

For example, additional synthetic input data can be generated through interpolation and/or 

extrapolation. 
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As another example preprocessing technique, some or all of the input data can be scaled, 

standardized, normalized, generalized, and/or regularized. Example regularization techniques 

include ridge regression; least absolute shrinkage and selection operator (LASSO); elastic net; 

least-angle regression; cross-validation; L1 regularization; L2 regularization; etc. As one 

example, some or all of the input data can be normalized by subtracting the mean across a given 

dimension’s feature values from each individual feature value and then dividing by the standard 

deviation or other metric. 

As another example preprocessing technique, some or all or the input data can be 

quantized or discretized. As yet another example, qualitative features or variables included in the 

input data can be converted to quantitative features or variables. For example, one hot encoding 

can be performed. 

In some implementations, dimensionality reduction techniques can be applied to the input 

data prior to input into the machine-learned model. Several examples of dimensionality reduction 

techniques are provided above, including, for example, principal component analysis; kernel 

principal component analysis; graph-based kernel principal component analysis; principal 

component regression; partial least squares regression; Sammon mapping; multidimensional 

scaling; projection pursuit; linear discriminant analysis; mixture discriminant analysis; quadratic 

discriminant analysis; generalized discriminant analysis; flexible discriminant analysis; 

autoencoding; etc. 

In some implementations, during training, the input data can be intentionally deformed in 

any number of ways to increase model robustness, generalization, or other qualities. Example 

techniques to deform the input data include adding noise; changing color, shade, or hue; 

magnification; segmentation; amplification; etc. 
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Referring again to Figure 2A, in response to receipt of the input data, the machine-learned 

model can provide the output data. The output data can include different types, forms, or 

variations of output data. As examples, in various implementations, the output data can include 

real-time suggestions, e.g., tuning (playing sharp or flat), tempo (when to slow down or speed 

up), suggestions on the notes plays (the E note should have been a F# and play articulated instead 

of slurred), music pieces to listen to, practice pieces, etc. In cases where the input data also 

includes a video signal, the output data can also include real time suggestions related to the 

physical attributes of a musician, e.g., the musician’s posture, finger position, a pianist’s wrist 

position, etc. 

In various implementations, the output data can include an analysis presented to the 

musician. For example, with polyphonic music (i.e. music with more than one simultaneous note, 

like piano), the invention recognizes harmonic and melodic patterns, and presents the analysis to 

the musician. 

In various implementations, the output data may include providing the musician with a 

classification and categorization of the mistakes the musician makes consistently, and offering 

exercises (warm-up exercises and patterns or etudes) designed to address to the problem the 

musician is experiencing, thereby approximating a human teacher.  

In various implementations, a single machine learner, e.g., neural network or other 

classification or regression method, jointly provides a plurality of types of feedback to the 

musician. In other implementations, each type of feedback is provided by a dedicated neural 

network. For example, a first neural network provides the harmonic structure of piece; a second 

neural network provides feedback relating to tempo consistency; a third neural network detects 

mistakes according to the score; a fourth neural network retrieves suggested exercises for the 
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musicians according to observed weaknesses and current level of the musician; etc. 

In implementations that involve theoretical analysis of musical passages, the important 

melodic, harmonic and other patterns are presented to the musician. For this purpose, the output 

of the machine learner, e.g., neural network, is not necessarily compared against a ground truth.  

As discussed above, in some implementations, the output data can include various types 

of classification data (e.g., binary classification, multiclass classification, single label, multi-

label, discrete classification, regressive classification, probabilistic classification, etc.) or can 

include various types of regressive data (e.g., linear regression, polynomial regression, nonlinear 

regression, simple regression, multiple regression, etc.). In other instances, the output data can 

include clustering data, anomaly detection data, recommendation data, or any of the other forms 

of output data discussed above. 

In some implementations, the output data can influence downstream processes or decision 

making. As one example, in some implementations, the output data can be interpreted and/or 

acted upon by a rules-based regulator. 

Thus, the present disclosure provides systems and methods that include or otherwise 

leverage one or more machine-learned models to provide real-time suggestions to musicians 

based on the audio and/or video input of a musician playing a music piece. Any of the different 

types or forms of input data described above can be combined with any of the different types or 

forms of machine-learned models described above to provide any of the different types or forms 

of output data described above. 

The systems and methods of the present disclosure can be implemented by or otherwise 

executed on one or more computing devices. Example computing devices include user 

computing devices (e.g., laptops, desktops, and mobile computing devices such as tablets, 
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smartphones, wearable computing devices, etc.); embedded computing devices (e.g., devices 

embedded within a vehicle, camera, image sensor, industrial machine, satellite, gaming console 

or controller, or home appliance such as a refrigerator, thermostat, energy meter, home energy 

manager, smart home assistant, etc.); server computing devices (e.g., database servers, parameter 

servers, file servers, mail servers, print servers, web servers, game servers, application servers, 

etc.); dedicated, specialized model processing or training devices; virtual computing devices; 

other computing devices or computing infrastructure; or combinations thereof. 

Thus, in some implementations, the machine-learned model can be stored at and/or 

implemented locally by an embedded device or a user computing device such as a mobile device. 

Output data obtained through local implementation of the machine-learned model at the 

embedded device or the user computing device can be used to improve performance of the 

embedded device or the user computing device (e.g., an application implemented by the 

embedded device or the user computing device). As one example, Figure 2B illustrates a block 

diagram of an example computing device that stores and implements a machine-learned model 

locally. 

In other implementations, the machine-learned model can be stored at and/or 

implemented by a server computing device. In some instances, output data obtained through 

implementation of the machine-learned model at the server computing device can be used to 

improve other server tasks or can be used by other non-user devices to improve services 

performed by or for such other non-user devices. For example, the output data can improve other 

downstream processes performed by the server computing device for a user computing device or 

embedded computing device. In other instances, output data obtained through implementation of 

the machine-learned model at the server computing device can be sent to and used by a user 
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computing device, an embedded computing device, or some other client device. For example, the 

server computing device can be said to perform machine learning as a service. As one example, 

Figure 3 illustrates a block diagram of an example client computing device that can communicate 

over a network with an example server computing system that includes a machine-learned 

model. 

In yet other implementations, different respective portions of the machine-learned model 

can be stored at and/or implemented by some combination of a user computing device; an 

embedded computing device; a server computing device; etc.  

Computing devices can perform graph processing techniques or other machine learning 

techniques using one or more machine learning platforms, frameworks, and/or libraries, such as, 

for example, TensorFlow, Caffe/Caffe2, Theano, Torch/PyTorch, MXnet, CNTK, etc. 

Computing devices can be distributed at different physical locations and connected via 

one or more networks. Distributed computing devices can operate according to sequential 

computing architectures, parallel computing architectures, or combinations thereof. In one 

example, distributed computing devices can be controlled or guided through use of a parameter 

server. 

In some implementations, multiple instances of the machine-learned model can be 

parallelized to provide increased processing throughput. For example, the multiple instances of 

the machine-learned model can be parallelized on a single processing device or computing 

device or parallelized across multiple processing devices or computing devices.  

Each computing device that implements the machine-learned model or other aspects of 

the present disclosure can include a number of hardware components that enable performance of 

the techniques described herein. For example, each computing device can include one or more 
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memory devices that store some or all of the machine-learned model. For example, the machine-

learned model can be a structured numerical representation that is stored in memory. The one or 

more memory devices can also include instructions for implementing the machine-learned model 

or performing other operations. Example memory devices include RAM, ROM, EEPROM, 

EPROM, flash memory devices, magnetic disks, etc., and combinations thereof. 

Each computing device can also include one or more processing devices that implement 

some or all of the machine-learned model and/or perform other related operations. Example 

processing devices include one or more of: a central processing unit (CPU); a visual processing 

unit (VPU); a graphics processing unit (GPU); a tensor processing unit (TPU); a neural 

processing unit (NPU); a neural processing engine; a core of a CPU, VPU, GPU, TPU, NPU or 

other processing device; an application specific integrated circuit (ASIC); a field programmable 

gate array (FPGA); a co-processor; a controller; or combinations of the processing devices 

described above. Processing devices can be embedded within other hardware components such 

as, for example, an image sensor, accelerometer, etc.  

Hardware components (e.g., memory devices and/or processing devices) can be spread 

across multiple physically distributed computing devices and/or virtually distributed computing 

systems. 

In some implementations, the machine-learned models described herein can be trained at 

a training computing system and then provided for storage and/or implementation at one or more 

computing devices, as described above. For example, a model trainer can be located at the 

training computing system. The training computing system can be included in or separate from 

the one or more computing devices that implement the machine-learned model. As one example, 

Figure 4 illustrates a block diagram of an example computing device in communication with an 
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example training computing system that includes a model trainer. 

In some implementations, the model can be trained in an offline fashion or an online 

fashion. In offline training (also known as batch learning), a model is trained on the entirety of a 

static set of training data. In online learning, the model is continuously trained (or re-trained) as 

new training data becomes available (e.g., while the model is used to perform inference). 

In some implementations, the model trainer can perform centralized training of the 

machine-learned models (e.g., based on a centrally stored dataset). In other implementations, 

decentralized training techniques such as distributed training, federated learning, or the like can 

be used to train, update, or personalize the machine-learned models.  

The machine-learned models described herein can be trained according to one or more of 

various different training types or techniques. For example, in some implementations, the 

machine-learned models can be trained using supervised learning, in which the machine-learned 

model is trained on a training dataset that includes instances or examples that have labels. The 

labels can be manually applied by experts, generated through crowd-sourcing, or provided by 

other techniques (e.g., by physics-based or complex mathematical models). In some 

implementations, if the user has provided consent, the training examples can be provided by the 

user computing device. In some implementations, this process can be referred to as personalizing 

the model. 

As one example, Figure 5 illustrates a block diagram of an example training process in 

which a machine-learned model is trained on training data that includes example input data that 

has labels. Training processes other than the example process depicted in Figure 5 can be used as 

well. 

In some implementations, training data can include examples of the input data that have 
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been assigned labels that correspond to the output data. For example, a recording/score pair 

where the student has played with inconsistent tempo, or a video where a student sits with poor 

posture. 

In some implementations, the machine-learned model can be trained by optimizing an 

objective function. For example, in some implementations, the objective function can be or 

include a loss function that compares (e.g., determines a difference between) output data 

generated by the model from the training data and labels (e.g., ground-truth labels) associated 

with the training data. For example, the loss function can evaluate a sum or mean of squared 

differences between the output data and the labels. As another example, the objective function 

can be or include a cost function that describes a cost of a certain outcome or output data. Other 

objective functions can include margin-based techniques such as, for example, triplet loss or 

maximum-margin training. 

One or more of various optimization techniques can be performed to optimize the 

objective function. For example, the optimization technique(s) can minimize or maximize the 

objective function. Example optimization techniques include Hessian-based techniques and 

gradient-based techniques, such as, for example, coordinate descent; gradient descent (e.g., 

stochastic gradient descent); subgradient methods; etc. Other optimization techniques include 

black box optimization techniques and heuristics. 

In some implementations, backward propagation of errors can be used in conjunction with 

an optimization technique (e.g., gradient based techniques) to train a model (e.g., a multi-layer 

model such as an artificial neural network). For example, an iterative cycle of propagation and 

model parameter (e.g., weights) update can be performed to train the model. Example 

backpropagation techniques include truncated backpropagation through time, Levenberg-
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Marquardt backpropagation, etc. 

In some implementations, the machine-learned models described herein can be trained 

using unsupervised learning techniques. Unsupervised learning can include inferring a function 

to describe hidden structure from unlabeled data. For example, a classification or categorization 

may not be included in the data. Unsupervised learning techniques can be used to produce 

machine-learned models capable of performing clustering, anomaly detection, learning latent 

variable models, or other tasks. 

In some implementations, the machine-learned models described herein can be trained 

using semi-supervised techniques which combine aspects of supervised learning and 

unsupervised learning. 

In some implementations, the machine-learned models described herein can be trained or 

otherwise generated through evolutionary techniques or genetic algorithms.  

In some implementations, the machine-learned models described herein can be trained 

using reinforcement learning. In reinforcement learning, an agent (e.g., model) can take actions 

in an environment and learn to maximize rewards and/or minimize penalties that result from such 

actions. Reinforcement learning can differ from the supervised learning problem in that correct 

input/output pairs are not presented, nor sub-optimal actions explicitly corrected.  

In some implementations, one or more generalization techniques can be performed during 

training to improve the generalization of the machine-learned model. Generalization techniques 

can help reduce overfitting of the machine-learned model to the training data. Example 

generalization techniques include dropout techniques; weight decay techniques; batch 

normalization; early stopping; subset selection; stepwise selection; etc. 
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In some implementations, the machine-learned models described herein can include or 

otherwise be impacted by a number of hyperparameters, such as, for example, learning rate, 

number of layers, number of nodes in each layer, number of leaves in a tree, number of clusters; 

etc. Hyperparameters can affect model performance. Hyperparameters can be hand selected or 

can be automatically selected through application of techniques such as, for example, grid 

search; black box optimization techniques (e.g., Bayesian optimization, random search, etc.); 

gradient-based optimization; etc. Example techniques and/or tools for performing automatic 

hyperparameter optimization include Hyperopt; Auto-WEKA; Spearmint; Metric Optimization 

Engine (MOE); etc. 

In some implementations, various techniques can be used to optimize and/or adapt the 

learning rate when the model is trained. Example techniques and/or tools for performing learning 

rate optimization or adaptation include Adagrad; Adaptive Moment Estimation (ADAM); 

Adadelta; RMSprop; etc. 

In some implementations, transfer learning techniques can be used to provide an initial 

model from which to begin training of the machine-learned models described herein. 

In some implementations, the machine-learned models described herein can be included 

in different portions of computer-readable code on a computing device. In one example, the 

machine-learned model can be included in a particular application or program and used (e.g., 

exclusively) by such particular application or program. Thus, in one example, a computing 

device can include a number of applications and one or more of such applications can contain its 

own respective machine learning library and machine-learned model(s).  

In another example, the machine-learned models described herein can be included in an 

operating system of a computing device (e.g., in a central intelligence layer of an operating 
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system) and can be called or otherwise used by one or more applications that interact with the 

operating system. In some implementations, each application can communicate with the central 

intelligence layer (and model(s) stored therein) using an application programming interface 

(API) (e.g., a common, public API across all applications). 

In some implementations, the central intelligence layer can communicate with a central 

device data layer. The central device data layer can be a centralized repository of data for the 

computing device. The central device data layer can communicate with a number of other 

components of the computing device, such as, for example, one or more sensors, a context 

manager, a device state component, and/or additional components. In some implementations, the 

central device data layer can communicate with each device component using an API (e.g., a 

private API). 

The technology discussed herein makes reference to servers, databases, software 

applications, and other computer-based systems, as well as actions taken and information sent to 

and from such systems. The inherent flexibility of computer-based systems allows for a great 

variety of possible configurations, combinations, and divisions of tasks and functionality 

between and among components. For instance, processes discussed herein can be implemented 

using a single device or component or multiple devices or components working in combination. 

Databases and applications can be implemented on a single system or distributed across multiple 

systems. Distributed components can operate sequentially or in parallel. 

In addition, the machine learning techniques described herein are readily interchangeable 

and combinable. Although certain example techniques have been described, many others exist 

and can be used in conjunction with aspects of the present disclosure. 

Thus, while the present subject matter has been described in detail with respect to various 
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specific example implementations, each example is provided by way of explanation, not 

limitation of the disclosure. One of ordinary skill in the art can readily make alterations to, 

variations of, and equivalents to such implementations. Accordingly, the subject disclosure does 

not preclude inclusion of such modifications, variations and/or additions to the present subject 

matter as would be readily apparent to one of ordinary skill in the art. For instance, features 

illustrated or described as part of one implementation can be used with another implementation 

to yield a still further implementation. 

A brief overview of example machine-learned models and associated techniques has been 

provided by the present disclosure. For additional details, readers should review the following 

references: Machine Learning A Probabilistic Perspective (Murphy); Rules of Machine 

Learning: Best Practices for ML Engineering (Zinkevich); Deep Learning (Goodfellow); 

Reinforcement Learning: An Introduction (Sutton); and Artificial Intelligence: A Modern 

Approach (Norvig). 

Conclusion 

The present disclosure is directed to techniques to automatically provide feedback and 

suggestions to musicians. In particular, in some implementations, the systems and methods of the 

present disclosure can include or otherwise leverage one or more machine-learned models to 

provide real-time feedback to musicians based on audio and/or video of the musician playing 

music. The techniques of this disclosure use various input features, e.g., the musician’s practice 

piece; references from a database of musical scores, data from different sensors, e.g., 

microphones, cameras, etc. to analyze the musician’s playing and provide real-time feedback or 

suggestions for corrections to be made, e.g., changing the tempo, playing a sharp or flat note 

(acting as an intelligent tuner), suggestions of practice pieces, etc.
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Figures 

Figure 2A 
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Figure 2B 
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