
Technical Disclosure Commons

Defensive Publications Series

September 22, 2017

Incremental Evaluation of Complex Conditions
Madhu Kallazhi Vasu

Nagaraju Pothineni

Bin Liu

Follow this and additional works at: http://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Vasu, Madhu Kallazhi; Pothineni, Nagaraju; and Liu, Bin, "Incremental Evaluation of Complex Conditions", Technical Disclosure
Commons, (September 22, 2017)
http://www.tdcommons.org/dpubs_series/684

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/234665794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series/684?utm_source=www.tdcommons.org%2Fdpubs_series%2F684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Incremental Evaluation of Complex Conditions

 The present disclosure describes methods that can save significant time and processing

power when running analytics on large quantities of data, such as advertising and commerce

data. Billions of people use the internet and each may visit a variety of websites on any given

day. Attempting to sort through all of that data and evaluate which users or visits meet a complex

condition, such as visiting a golf equipment shopping page in the last week, can be like trying to

find a needle in petabytes of data. The methods described in the present disclosure use an

incremental evaluation technique that breaks down complex conditions and data into smaller

pieces in order to evaluate and store intermediate results. As a result, less time and processing

power is needed to produce a final response to queries regarding the data.

A visitor condition can be used to search through a collection of visitor data and

determine qualified visitors. The visitor condition may be composed of a variety of unique

segments. Each segment may be used for a specific purpose and can be evaluated using shortcuts

and intermediate results. Evaluation of the visitor condition as a whole simply requires a cross-

visit AND of all segments. A more detailed description regarding how these segments can work

together to form a simple visitor condition is presented below.

The visitor condition may include two visitor segments, include_criteria and exit_criteria,

each of which is a UnifiedSegment (see Figure 1 below) with a visitor_segment but no

visit_segment. When evaluating a visitor condition, the exit_criteria segment takes priority. If

exit_criteria is met by a visitor, the visitor is no longer a member of the audience even if

include_criteria is also met. A visitor’s unit of data can be referred to as a visit, or session, which

contains multiple activities in a unit of time. A visitor may have multiple visits on any given day.

The visitor condition applies to all visits for each visitor during a lookback window.

2

Vasu et al.: Incremental Evaluation of Complex Conditions

Published by Technical Disclosure Commons, 2017

Figure 1: Overview of Segments

As shown in Figure 1, a UnifiedSegment can contain two TypedSegments: one

visit_segment and one visitor_segment. For audience definition and evaluating the visitor

condition only the visitor_segment is used. A TypedSegment can include multiple

SegmentFilters of two different types: Simple and Sequence. UnifiedSegments can contain

multiple SegmentFilters AND-ed together in the form: 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐹𝐹0^𝐹𝐹1^𝐹𝐹2 (where 𝐹𝐹𝑛𝑛 represents a

SegmentFilter). A Simple SegmentFilter can be of the form:

𝐹𝐹 = (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐸𝐸1 𝑂𝑂𝑂𝑂 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐸𝐸2) 𝐴𝐴𝐴𝐴𝐴𝐴 (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐸𝐸3 𝑂𝑂𝑂𝑂 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐸𝐸4), where each filter can be a key or value

filter. Any of the value filters can be visitor-scoped value filters which cannot be evaluated on

just a single visit. A Sequence SegmentFilter can contain multiple ordered Steps, each of which

can be evaluated in a single visit, but, in some implementations, the whole Sequence may require

more than one visit to be evaluated. Complements can be used with any filters requiring that the

filter cannot be true for any visits. Multiple SegmentFilters contained in an overall

UnifiedSegment may require multiple visits to evaluate. It can become prohibitively processor-

intensive to use all visits to evaluate a visitor condition when the lookback window extends for

multiple months.

3

Defensive Publications Series, Art. 684 [2017]

http://www.tdcommons.org/dpubs_series/684

Incremental Evaluation

Space can be traded for time by storing and reusing intermediate evaluation results of

SegmentFilters. In some implementations, evaluation results can be stored for each

SegmentFilter as soon as it can be evaluated to true and avoid evaluating it again. Simple

SegmentFilters can be marked as true for some visits and Sequence SegmentFilters can be

marked as true for visits up to a point. In some implementations, a result is stored for each

SegmentFilter and for each day within a time window. For example, suppose visit data is

gathered from day 0 to day 15 (starting at 12AM on day 0) and visitor conditions need to be

evaluated on a lookback window of 5 days. There is enough data gathered to evaluate the visitor

condition on the morning of day 5, where evaluation requires intermediate results for each day

from day 0 to day 4 along with any new data after that. Intermediate evaluation results can be

stored in a proto, in some implementations.

Protocol buffer definitions that can be used to implement the methods described in the

present disclosure are shown below.

message SegmentEvalStatus {
 optional int64 true_time = 1;
 repeated int32 matched_filters = 2;

 message VisitorScopeFilters {
 required int32 or_group = 1;
 repeated int32 filter = 2;
 }

 message StepStatus {
 required int32 step_index = 1;
 repeated string reference = 2;
 repeated string value = 3;
 optional VisitorScopeFilters remaining_filters = 4;
 }

 message SequenceStatus {
 repeated StepStatus step_status = 1;

4

Vasu et al.: Incremental Evaluation of Complex Conditions

Published by Technical Disclosure Commons, 2017

 }

 map<int32, SequenceStatus> sequence_progress_map = 3;
 map<int32, VisitorScopeFilters> remaining_filters = 4;
}

message AudienceEvalStatus {
 optional SegmentEvalStatus include_criteria_status = 1;
 optional SegmentEvalStatus exit_criteria_status = 2;
}

Simple SegmentFilters

The most simple, and also most common, UnifiedSegment includes only Simple

SegmentFilters. In this case, each SegmentFilter can be evaluated once for each visit each day,

and a bit can be stored if the SegmentFilter evaluates to true. Complements can be considered

when the whole UnifiedSegment is evaluated. If a SegmentFilter is already true for a previous

visit on the same day, there is no need to evaluate it for visits later in the same day. The

intermediate result for each visitor can be written to a bigtable after processing all visits for a

day. Audience evaluation results (whether a visitor is in an audience) can be written to the user

attribute store. No intermediate results are stored for a visitor if there is no need to update the

result from the previous day. All of the SegmentFilters can be AND-ed together over the

lookback window and complements considered when the UnifiedSegment is evaluated.

 When complements are included anywhere in the evaluation of a UnifiedSegment that

contains only Simple SegmentFilters, additional evaluation shortcuts can be taken to optimize

the process. The process can be optimized at two places: storing intermediate results and

evaluating the UnifiedSegment. Complements can be specified in three places when evaluating a

UnifiedSegment: the UnifiedSegment itself, the TypedSegment (AND of SegmentFilters), and

on each SegmentFilter. It is unlikely that complements would be included on both the

5

Defensive Publications Series, Art. 684 [2017]

http://www.tdcommons.org/dpubs_series/684

UnifiedSegment and TypedSegment for the purpose of defining an audience (since they would

negate each other).

The first case to consider includes complements at the SegmentFilter level but not at the

TypedSegment or UnifiedSegment levels. In the example shown in Table 1 below, a Simple

SegmentFilter with a lookback window of three days is shown. 𝐹𝐹0 is complemented and

evaluates to true on day 0. This means any lookback window including day 0 will be false and no

other SegmentFilters need to be evaluated for that day. On the other hand, if there is a

complement at the TypedSegment level, just the opposite would be true. A complemented

TypedSegment that includes day 0 in the lookback window can be evaluated to true the moment

complemented SegmentFilter 𝐹𝐹0 evaluates to false. Taking advantage of complements to shortcut

the evaluation in this manner can save significant space and processing time.

 𝐹𝐹0 𝐹𝐹1 𝐹𝐹2 𝐹𝐹3

day 0 True True True

day 1 True True

day 2 True

day 3 True

Table 1: 𝐹𝐹 = 𝐹𝐹0^𝐹𝐹1^𝐹𝐹2^𝐹𝐹3

Sequence SegmentFilters

A Sequence SegmentFilter can have multiple Steps, each of which is similar to a Simple

SegmentFilter. A formula for this filter can take the form 𝐹𝐹 = 𝑆𝑆0 → 𝑆𝑆1 → 𝑆𝑆2 → 𝑆𝑆3 where 𝑆𝑆𝑖𝑖

represents a Step in the Sequence. During evaluation, all visits for a visitor in the lookback

window can be turned into a group of hit data and each Step can then be evaluated at hit level.

Visit level metrics can be copied to each group of hit data for consideration. Different Steps need

to be true at different hits. As an example, Step 𝑆𝑆𝑖𝑖 needs to be true for a hit that happened later

6

Vasu et al.: Incremental Evaluation of Complex Conditions

Published by Technical Disclosure Commons, 2017

than a hit where Step 𝑆𝑆𝑖𝑖−1 is true. A Sequence can be evaluated to true for a visitor when all

Steps evaluate to true for different hits satisfying the time order.

 In order to use a sliding lookback window, the evaluation results for each Step need to be

stored in time order every day their results change. Referring to the example in Table 2, a

Sequence SegmentFilter of five Steps with a lookback window of 4 days is shown.

 day 0 day 1 day 2 day 3 day 4

Index of Steps that are true in time order 0, 2, 1 0, 3 4, 1, 2 4, 3 4

Table 2: 𝐹𝐹 = 𝑆𝑆0 → 𝑆𝑆1 → ⋯ → 𝑆𝑆4

In simple cases, Table 2 can be stored as an intermediate result. The second row shows which

Steps were evaluated true and the order in which they were evaluated as true. At the time of

evaluating the whole Sequence SegmentFilter, the stored indices can be scanned from left to

right in order to determine if the Steps are true in order across the whole lookback window. For

example, consider the lookback window from day 0 to day 3 shown in Table 2. 𝑆𝑆0 and 𝑆𝑆1 are

true, in order, on day 0. 𝑆𝑆2 is true again on day 2, and 𝑆𝑆3 is true again on day 3. 𝑆𝑆4 is not true

again until day 4, so the Sequence SegmentFilter as a whole is false from day 0 to day 3.

 It is possible that Steps are true multiple times in a single visit. An example where this is

true is shown in Table 3:

 𝐹𝐹1 𝐹𝐹2 𝐹𝐹3 𝐹𝐹4 𝐹𝐹5 𝐹𝐹6 𝐹𝐹7 𝐹𝐹8 𝐹𝐹9 𝐹𝐹10

𝑆𝑆1 T T

𝑆𝑆2 T T T

𝑆𝑆3 T T T T T T

Table 3: Hit Data for a Visit

7

Defensive Publications Series, Art. 684 [2017]

http://www.tdcommons.org/dpubs_series/684

 The columns in Table 3 represent different timestamps for a single visit. The timestamps

where each Step is evaluated to true are shown in the rows. It appears that, in general, for a visit

such as the one shown in Table 3, at most 𝑛𝑛 occurrences for the 𝑛𝑛𝑡𝑡ℎ Step of the Sequence need to

be stored. For example, 𝑆𝑆1 at 𝐹𝐹3 is always needed in case this is the first visit in the lookback

window. 𝑆𝑆1 at 𝐹𝐹7 will never be needed since 𝑆𝑆1 is already true at an earlier timestamp for the

same visit. 𝑆𝑆2 at 𝐹𝐹2 may be needed even though it comes before the first 𝑆𝑆1 during this visit

because the lookback window may extend earlier than this visit where an 𝑆𝑆1 could be used to

start forming the Sequence. 𝑆𝑆2 at 𝐹𝐹4 will always be needed in case the lookback window begins

with this visit, as it comes after the first 𝑆𝑆1. 𝑆𝑆2 at 𝐹𝐹7 will never be needed. 𝑆𝑆3 at 𝐹𝐹1 may be needed,

in case the lookback window includes 𝑆𝑆1 and 𝑆𝑆2 in order for previous visits. 𝑆𝑆3 at 𝐹𝐹3 may be

needed, as it comes after the first 𝑆𝑆2 during this visit, and may be used in conjunction with an 𝑆𝑆1

from a previous visit in the lookback window. 𝑆𝑆3 at 𝐹𝐹5 will always be needed in order to

complete the Sequence in this time window, and 𝑆𝑆3 at 𝐹𝐹6, 𝐹𝐹7, and 𝐹𝐹9 will never be needed. An

occurrence for a Step in a sequence SegmentFilter is useful when and only when it is used to

construct a Sequence in the lookback window, and the earliest occurrence is always stored. Most

Sequence filters contain four Steps or fewer, so on each day at most ten occurrences need to be

stored. The same logic can be applied to different visits across the same day.

 An alternative to the approach described above with regard to evaluating Sequence

SegmentFilters can be to store qualifying sub-Sequences for each day (or visit). This approach is

more complex and seems less intuitive, however, the evaluation of Sequences becomes slightly

simpler. Referring to the example in Table 2, the sub-Sequence [0,1] can be stored as an

intermediate result for day 0. Similarly, the sub-Sequence [1,0] can be stored for day 1.

8

Vasu et al.: Incremental Evaluation of Complex Conditions

Published by Technical Disclosure Commons, 2017

 In cases where Steps in a Sequence refer to key or value filters used in a previous Step,

the above methods described for evaluating the Sequence will no longer hold true. These cross-

Step references require the storage of more information in order to be supported. Referring again

to the example in Table 2, suppose that Step S3 indicates that its visit_number needs to be larger

than the visit_number in Step S1, and that Step S4 requires the page visited is different than the

one used in Step S2. Table 4 shown below details the additional information needed in these

cases.

 day 0 day 1

Index of Steps that are true, in
time order, together with <key,
value> pairs that are referenced

in the future.

0, [<visit_number, 0>,]
2, [<request_uri, index.html>,]

1, []

0, [<visit_number, 2>,]
3, []

Table 4: Cross-Step References

Visitor-scoped Value Filters

 Recall that a SegmentFilter consists of OR groups AND-ed together such as 𝐹𝐹 =

(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐸𝐸1 𝑂𝑂𝑂𝑂 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐸𝐸2) 𝐴𝐴𝐴𝐴𝐴𝐴 (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐸𝐸3 𝑂𝑂𝑂𝑂 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐸𝐸4). Each filter in the OR groups can be key or

value filters, and value filters can include visitor-scoped metrics such as total number of hits in a

lookback window. In some implementations, these visitor-scoped value filters cannot be

evaluated on a single visit, however processing time can still be saved by making use of

intermediate results. If any of the OR groups in the SegmentFilter do not contain visitor-scoped

value filters, and the OR group can be evaluated as false, then no other information is needed and

the whole SegmentFilter can be evaluated as false. If an OR group does contain at least one

visitor-scoped value filter, but it also includes at least one regular (non-visitor-scoped) filter, and

a regular filter can be evaluated to true, then the whole OR group can be evaluated to true and no

other information is needed. If the OR group contains no regular filters, or none of them can be

9

Defensive Publications Series, Art. 684 [2017]

http://www.tdcommons.org/dpubs_series/684

evaluated to true, then the OR group relies upon at least one visitor-scoped value filter. When

this is the case, an AND group is stored containing all visitor-scoped value filters needed to

evaluate the SegmentFilter with all other filters are removed. Indices of OR groups and visitor-

scoped value filters can be stored in the remaining_filters field for StepStatus and

SegmentEvalStatus, for Sequence and Simple SegmentFilters, respectively. The SegmentFilter or

Step can then be evaluated solely based on remaining_filters, which can be updated in

intermediate storage after new visits are processed.

 When evaluating the whole TypedSegment the SegmentEvalStatus proto can be checked.

The remaining_filters should already be up to date from the previous day, and those filters can be

decided together with data from the latest day. A filter may be on lifetime metrics such as

number of transactions, for which for which the latest visit data can be combined with data from

the user attribute store. The user attribute store can be populated at the end of each day with the

latest computed lifetime metrics used to evaluate any visitor-scoped value filters. After all

visitor-scoped value filters are evaluated, the truth of all Simple and Sequence SegmentFilters

can be evaluated along with the entire audience.

Storage and Reuse of Intermediate Results

 Information needed for incremental evaluation can be captured from the

SegmentEvalStatus proto. A proto for each audience for each visitor can be stored in a bigtable

referred to as an Intermediate State Table (IST). The proto does not need to be stored for a visitor

on a day when there are no visits. Intermediate results for an audience are only stored if they are

useful for evaluation (some filter evaluates to true).

10

Vasu et al.: Incremental Evaluation of Complex Conditions

Published by Technical Disclosure Commons, 2017

Abstract

 Evaluating a complex condition such as users who have visited a certain type of website

in the last week requires a great deal of processing power. The present disclosure describes an

incremental evaluation technique that makes use of shortcuts and intermediate results in order to

reduce the amount of time and processing needed to produce a final result. The main component

of a visitor condition as described is a unified segment which can contain any number of simple

or sequence type segment filters. Each segment filter can be evaluated using shortcuts and

intermediate results. The evaluation of the entire unified segment simply requires a cross-visit

AND of all segment filters. Making use of simpler evaluations on much smaller sets of data can

be an effective approach to data analytics at a large scale.

11

Defensive Publications Series, Art. 684 [2017]

http://www.tdcommons.org/dpubs_series/684

	Technical Disclosure Commons
	September 22, 2017

	Incremental Evaluation of Complex Conditions
	Madhu Kallazhi Vasu
	Nagaraju Pothineni
	Bin Liu
	Recommended Citation

	tmp.1506103789.pdf.zH9jl

