
Technical Disclosure Commons

Defensive Publications Series

August 16, 2017

Smart State Management
Andy Lou
Hewlett Packard Enterprise

I-Chun Shih
Hewlett Packard Enterprise

Johnny Hung
Hewlett Packard Enterprise

Ricky Tang
Hewlett Packard Enterprise

Follow this and additional works at: http://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Lou, Andy; Shih, I-Chun; Hung, Johnny; and Tang, Ricky, "Smart State Management", Technical Disclosure Commons, (August 16,
2017)
http://www.tdcommons.org/dpubs_series/626

http://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F626&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F626&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F626&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series/626?utm_source=www.tdcommons.org%2Fdpubs_series%2F626&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Smart State Management

A method of smart state management to make a software stateful is disclosed. This

method involves determining where to define states within a software using a

classification learning mechanism.

This mechanism includes a normalizer, which can extract the characteristics of a job and

an inspector which can determine whether a state will be bypassed according to the

characteristics or human-defined rules. The characteristics is a set of attributes

containing input values, execution results, and pattern of states that are used by the

inspector to determine whether a particular state within a future job is exactly part of

this very characteristics.

In order to make the original state machine able to adapt a new stateful flow without

changing the original flow or procedures. The smart state management engine needs to

define entry points and exit points in different states of software execution.

Normalizer

Rule
Set

Smart State Management Engine

Execution results
Normalize the data Characteristic

table
Classification

table

Inspector

Rule
Set Behavior lookup

Extract the key
State pattern

Input values

When software execution starts, the inspector will look up the classification table and

see if a particular state matches an entry in the classification table with the same state

pattern. If the state does not match any entry in the classification table, the job will be

executed, and then the normalizer will update both of the characteristic table and the

classification table after the execution is complete. If the state matches an entry in the

classification table, this state will be bypassed and proceed to the next state in the state

pattern.

2

Lou et al.: Smart State Management

Published by Technical Disclosure Commons, 2017

Characteristic table:

ID Characteristic Input Result Time Stamp Jobs

1 E 10.10.1.1 4 2017/04/12
19:30

1

2 C 288 Ture 2017/04/12
19:30

1

3 B Bigvm Bigvm 2017/05/12
19:30

1

4 D {sciprt 1} Ture 2017/08/12
19:30

1

5 A {scipt 2} 200 2017/03/16
19:30

2

Classfication table:

ID Key Time
Stampe

Bypass States

1 E {10.10.1.1,
4}

2017/04/12
19:30

0 C,D,B,E,A

2 E {10.10.4.5,
6}

2017/04/19
19:30

1 A,Z,E,J,K

3 C {288, True} 2017/04/12
19:30

1 D,B,c

4 B {BigVM,
BigVM}

2017/04/12
19:30

1 D,B,E

5 D {script 1,
True}

2017/04/12
19:30

0 C,B,A

6 E {10.10.6.7,
10}

2017/04/12
19:30

0 B,C,D,E

The way to make software execution stateful is mocking up the processes to predict

what processes will be executed in a run and can be defined as a state. After the states

are defined automatically by the normalizer and the inspector, these states can be used

to record the state patterns and update the classification table.

3

Defensive Publications Series, Art. 626 [2017]

http://www.tdcommons.org/dpubs_series/626

Original State Machine

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

Objects, Functions, Class

Normalizer

Inspector

Here is the expeted result:

Optimized Execution Time (P) = ∑ (𝐶𝑥𝐽𝑜𝑏𝑇𝑥
𝑛

𝑥=1
)

The 𝐶𝑥 is the Bypass parameter (which can be 0 or 1) controlling either to bypass or to

execute 𝐽𝑜𝑏𝑥. Therefore, the more 𝐶𝑥 values are applied to the formula, the more

stateful the software execution can be. Furthermore, if more 𝐶𝑥 values equal to 0, the

fewer states will be executed and the more time can be saved.

Disclosed by Andy Lou, I-Chun Shih, Johnny Hung and Ricky Tang, Hewlett Packard

Enterprise

4

Lou et al.: Smart State Management

Published by Technical Disclosure Commons, 2017

	Technical Disclosure Commons
	August 16, 2017

	Smart State Management
	Andy Lou
	I-Chun Shih
	Johnny Hung
	Ricky Tang
	Recommended Citation

	tmp.1502893813.pdf.TJzFK

