
Technical Disclosure Commons

Defensive Publications Series

June 29, 2017

LLVM FUSING KERNEL COMPILER DESIGN
Christopher Daniel Leary

Robert Coleman Springer IV

Follow this and additional works at: http://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Leary, Christopher Daniel and Springer, Robert Coleman IV, "LLVM FUSING KERNEL COMPILER DESIGN", Technical
Disclosure Commons, (June 29, 2017)
http://www.tdcommons.org/dpubs_series/567

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/234665683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series/567?utm_source=www.tdcommons.org%2Fdpubs_series%2F567&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

LLVM FUSING KERNEL COMPILER DESIGN

BACKGROUND

A computational graph defines sequences of operations by the types of operations, the

data that is input into and output from each operation, and computational dependencies. A

compiler can translate a computational graph to produce compiled code that is executable on

devices.

SUMMARY

A compiler can include a transformation component that translates computational graph

operations into device-specific operations. The transformation component can translate a

sequence of computational graph operations into a fused sequence of device-specific operations

that optimize the performance of the operations on the device.

DESCRIPTION OF DRAWINGS

FIG. 1 illustrates a computational graph that contains multiple operations to add two

vectors.

FIG. 2 illustrates an example computational graph that includes complex and simple

operations, where an operation may be fused into the input location of a complex operation.

FIG. 3 illustrates an example computational graph that includes simple and complex

operations, where an operation may be fused into the output location of a complex operation.

DETAILED DESCRIPTION

A compiler can include a transformation component that translates computational graph

operations into optimized device-specific operations. The transformation component can map

computational graph operations into LLVM intermediate representation (IR) operations and

chain the LLVM IR operations together to produce a sequence of operations that have faster

2

Leary and Springer: LLVM FUSING KERNEL COMPILER DESIGN

Published by Technical Disclosure Commons, 2017

execution times on the devices than operations that are not chained.

A computational graph expresses computations, e.g. of a machine learning model, with

nodes representing operations and directed edges representing dependencies between operations.

An incoming edge to a node represents a flow of an input into the node, i.e., an input argument to

the operation represented by the node. If all arguments required for an operation are available to

the operation node, the node is enabled and can be executed.

An outgoing edge from a node represents a flow of an output of the operation represented

by the node to be used as an input to an operation represented by another node. Thus, a directed

edge connecting a first node in the graph to a second node in the graph indicates that an output

generated by the operation represented by the first node is used as an input to the operation

represented by the second node.

The operations represented in the computational graph can be linear algebraic operations,

e.g., matrix multiply, neural network operations, or operations for a different kind of machine

learning model. For example, FIG. 1 illustrates a computational graph that contains multiple

operations to add four vectors.

FIG. 1

3

Defensive Publications Series, Art. 567 [2017]

http://www.tdcommons.org/dpubs_series/567

Example operations to create the computational graph of FIG. 1 is illustrated in Table 1.

%1 = PARAM A
%2 = PARAM B

%3 = ADD %1, %2
%4 = PARAM C
%5 = PARAM D

%6 = ADD %3, %5
Table 1

Typically, combining multiple operations requires additional implicit output locations.

For example, as illustrated in Table 2, the compiler code to create the computational graph as

compiler operations contains multiple temporary output locations prior to the final explicit output

operation.

%1 = [Sequence of IR to load @threadIdx.x; omitted.]
%2 = getelementptr float* %a, i64 %1
%3 = load float* %2; Load a[index]
%4 = getelementptr float* %b, i64 %1
%5 = load float* %4; Load b[index]
%6 = fadd %3, %5
%7 = getelementptr float %temp_1, %1
store float %6, float *%7 ; Store to temp buffer %1
%8 = getelementptr float* %c, i64 %1
%9 = load float* %8; Load c[index]
%10 = getelementptr float* %d, i64 %1
%11 = load float* %10 ; Load d[index]
%12 = fadd %9, %11
%13 = getelementptr float %temp_2, %1
store float %12, float* %13 ; store to temp buffer #2
%14 = getelementptr float %temp_1, %1
%15 = load float* %14; Load temp_buffer_1[index]
%16 = getelementptr float %temp_2, %1
%17 = load float* %16, %2; Load temp_buffer_2[index]
%18 = fadd %15, %17
%19 = getelementptr float* %c, i64 %1
%20 = store float %18, float* %19; store to e[index]

Table 2

As shown in the assignment of %7, the result of the addition of a and b is stored in a

temporary buffer, temp_1. The result of the addition of c and d is stored in temporary buffer,

4

Leary and Springer: LLVM FUSING KERNEL COMPILER DESIGN

Published by Technical Disclosure Commons, 2017

temp_2. The values in temp_1 and temp_2 are added together and stored in e. The computational

graph is evaluated in a left-to-right postorder fashion.

Complex operations, e.g. a basic linear algebra subprogram (BLAS) routine, are usually

too complex for a user to implement directly

 with high performance. Instead, they are invoked as device-specific function calls. For

example, a computational graph can contain complex operations, GEMM functions, which are

GEneral Matrix Multiply operations. These complex operations, e.g. GEMM functions, must be

callable while on a specific device.

In order to translate computational graph operations into LLVM IR operations, a

compiler needs to create a parse tree from source code. At each node, the compiler converts the

computational graph operations into LLVM IR by generating LLVM IR operations, identifying

and tracking implicit outputs, and producing block synchronization instructions if necessary to

implement the operations of the computational graph.

A compiler parses source code to extract operations and operands. The compiler creates

a computational graph by generating nodes representing operations and edges representing

dependencies between operations. Each type of operation requires at least one input on which it

operates, except for input parameters, which implicitly require no input. The output of the last

instruction is sent to an output parameter which only has one input and no output edges. The

compiler then traverses the computational graph by starting at the output node and recursively

evaluates predecessor nodes left-to-right and then evaluates the operation described at the current

node. Evaluation begins with identifying the exact operation to be executed and ensuring that

the input operands are compatible for the operation.

For simple operations that can be expressed as LLVM IR operations, the compiler can

5

Defensive Publications Series, Art. 567 [2017]

http://www.tdcommons.org/dpubs_series/567

generate the operations directly in-line. The compiler collects arguments for the operation,

performs the operation, and stores the results of the operation in an output location.

The compiler can emit complex operations by using pre-supplied device functions, e.g.

library functions. These operations read their input locations and write their output locations via

hidden internal logic. The compiler has to identify the implicit output location for each complex

operation.

In order to optimize operations compiled on a device, a compiler can perform operation

fusion when creating LLVM IR operations. Operation fusion is the process of combining

successive operations into a single function, omitting both the function call and the data

movement between operations. Operation fusion reduces the need for temporary buffers since

only the final result needs to be copied to an output buffer. Operation fusion also reduces

memory calls by removing reads from and writes to temporary buffers.

Defining pairs of operations which a compiler can fuse is rather difficult. Operations of

addition, subtraction, or negation between two buffers containing data of equal shape can be

fused. The compiler can also fuse addition, subtraction, multiplication, or division operations

between a scalar and any buffer and map operations over any buffer.

As disclosed, FIG. 1 illustrates a computational graph that contains multiple operations to

add two vectors. Table 2 illustrates LLVM IR operations that represent the operations of the

computational graph without operation fusion. Without operation fusion, the compiler code

requires multiple temporary storage buffers. The transformation component of an example

compiler performs operation fusion alleviating the need for these temporary storage buffers. For

example, example fused compiler code to create the computational graph of FIG. 1 is illustrated

in Table 3.

6

Leary and Springer: LLVM FUSING KERNEL COMPILER DESIGN

Published by Technical Disclosure Commons, 2017

%1 = [Sequence of IR to load @threadIdx.x; omitted.]
%2 = getelementptr float* %a, i64 %1
%3 = load float* %2; Load a[index]
%4 = getelementptr float* %b, i64 %1
%5 = load float* %4; Load b[index]
%6 = fadd %3, %5
%7 = getelementptr float* %c, i64 %1
%8 = load float* %8; Load c[index]
%9 = getelementptr float* %d, i64 %1
%10 = load float* %9; Load d[index]
%11 = fadd %8, %10
%12 = fadd %6, %17
%13 = getelementptr float* %c, i64 %5
store float %12, float* %13; store to e[index]

Table 3

In this fusion example, the compiler code of Table 3 does not need the stores of

temp_1 and temp_2 that the compiler code of Table 2 required since the addition operation

results are fused in-line. Additionally, the compiler no longer needs to execute the loads from

temp_1 and temp_2 that represent the input loading for the final addition. For simple operations,

fusion is simply a matter of eliminating the temporary storage buffers between operations and

using intermediate results from one operation as input to the next.

Because pre-supplied device functions, such as GEMM functions, can have complex

input access patterns, generating fused operations before pre-supplied device function

invocations does not provide desired optimization. Instead, to optimize compiler code, the

proposed compiler captures a sequence of operations as an LLVM function to be evaluated when

an input matrix is read inside a pre-supplied device function and only executes these operations

when a unit of input is read.

Since a computational graph created from computational operations is traversed bottom-

to-top, each node passes, to its predecessor nodes, the LLVM function indicating where its

instructions should be generated when creating fusable regions of operations.

7

Defensive Publications Series, Art. 567 [2017]

http://www.tdcommons.org/dpubs_series/567

FIG 2 illustrates an example computational graph that includes complex (GEMM) and

simple (addition) operations.

FIG. 2

In this example, a GEMM function is the last operation and produces the kernel’s output,

E. When traversing its

predecessor nodes, the GEMM function provides each node with the LLVM function to

capture the sequence of input operations in a “portable” function. Each operation’s intermediate

representation instructions should be put into the LLVM function as long as the operations are

fusable. If a non-fusable node is emitted, the series of fusable instructions is terminated. Table 4

illustrates the operations to produce the computational graph of FIG. 2. Table 5 illustrates the

fused compiler code produced by fusing the inputs to the lower GEMM operation in FIG. 2.

%1 = PARAM A
%2 = PARAM B
%3 = MUL %1, %2
%4 = PARAM C
%5 = ADD %4, %3
%6 = PARAM D
%7 = MUL %5, %6

 Table 4

8

Leary and Springer: LLVM FUSING KERNEL COMPILER DESIGN

Published by Technical Disclosure Commons, 2017

define float @gemm_2_lhs_input (float* %buf, int64, %index) {
%1 = getelementptr float* %buf, i64 %index
%2 = load float* %1; Load output of first GEMM
%3 = getelementptr float* %c, i64 index
%4 = load float* %2; load data in “c”
%5 = fadd %2, %4
ret float %5
}
 Table 5

In this example, the node representing the “lower” GEMM function is visited and passes

an LLVM function to both its predecessor nodes. The “Add” node is visited, and then the C

parameter is visited. The C parameter node puts an operation of a load to C into the LLVM

function. The compiler then traverses the upper GEMM function node. Since this node is not

fusable, the input LLVM function is complete.

FIG. 3 illustrates an example computational graph that includes simple and complex

operations.

 FIG. 3

9

Defensive Publications Series, Art. 567 [2017]

http://www.tdcommons.org/dpubs_series/567

A complication arises when a final sequence of computational graph operations is fusable

as illustrated in FIG. 3. There may be a benefit to executing those last operations when the pre-

supplied device function, e.g. the GEMM function, is writing to its output buffer. The last

operations must again be captured in an LLVM function. If, in traversing the tree, a non-fusable

operation is encountered, then the LLVM function will be generated at that operation’s write

time. If all operations are fusable, then the last operations should be invoked at kernel top-level.

Table 6 illustrates the source code to produce the computational graph of FIG. 3. Table 7

illustrates the compiler code produced by fusing into the output LLVM function when evaluating

the computational graph of FIG. 3.

%1 = PARAM A
%2 = PARAM B
%3 = MUL %1, %2
%4 = PARAM C
%5 = MUL %4, %3
%6 = PARAM D
%7 = ADD %5, %6

 Table 6

define float &gemm_2_output(float* %buf, int64 %index, float %value)
{
%1 = getelementptr float* %d, i64 %index
%2 = load float* %1
%3 = fadd %value, %2
%4 = get elementptr float* %buf, i64 %index
store float %3, float* %4
}
 Table 7

10

Leary and Springer: LLVM FUSING KERNEL COMPILER DESIGN

Published by Technical Disclosure Commons, 2017

ABSTRACT OF THE DISCLOSURE

An example translation component is provided for performing operation fusion

optimization. The example component can create a sequence of device-specific compiler

operations that performs the operations described by a sequence of computational graph

operations in the least amount of time.

11

Defensive Publications Series, Art. 567 [2017]

http://www.tdcommons.org/dpubs_series/567

	Technical Disclosure Commons
	June 29, 2017

	LLVM FUSING KERNEL COMPILER DESIGN
	Christopher Daniel Leary
	Robert Coleman Springer IV
	Recommended Citation

	Microsoft Word - Dpub46588doc747acd9f-729f-4204-857a-19fedac67b8f.docx

