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Techniques for Disambiguation of Uncertain User Input 

 

 

ABSTRACT 

This disclosure describes techniques to perform disambiguation of uncertain or inaccurate 

user inputs to a computing device. Uncertain input can occur, for example, by an inadvertent 

touching of the touchscreen of a smartphone in a user’s pocket, inadvertent detection of gesture, 

etc. Current devices often interpret such input incorrectly, and respond in a manner that is 

unexpected for the user.  

Techniques disclosed herein determine a user intent based on the detected gesture. 

Machine learning is used to disambiguate user-intended input from inadvertent input. The 

framework described herein detects input and triggers an analyzer. The analyzer receives data 

from various sources, based on user permission to access such data.  The data can include a state 

of the device, device configuration, user context, sensor data, history, etc. Results from the 

analyzer are provided to a resolver that determines the user intent and performs an appropriate 

action, e.g., triggering an application on the device. 
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BACKGROUND 

 Computing devices such as smartphone, tablets, wearable devices, gaming consoles, etc. 

permit users to provide input via gestures that are detected by the device, e.g., via a touchscreen 

display. Gesture inputs enable users to utilize a computing device without entering commands 

via a keyboard, a pointing device, etc.  Touchscreens are sensitive to touch, e.g., can detect touch 

by one or more human fingers, hand, a stylus, etc. 

 Capacitive touchscreens are popular in devices such as smartphones and tablets. For 

example, a capacitive touchscreen includes an insulator such as glass that is coated with a 

transparent conductor. A human touch on the surface of the touchscreen is detected based on a 

distortion of an electrostatic field caused by the touch. Such distortion is measurable as a change 

in capacitance. The detected location of the touch is then processed by the computing device, 

e.g., to identify the gesture performed by the user.  

 Touchscreens can detect different types of gestures, e.g., a tap gesture, a drag gesture, a 

touch gesture performed using multiple fingers simultaneously, a pinch gesture, etc. Modern user 

interface techniques map gestures to operations on the device, e.g., in response to detecting a tap 

gesture on an icon, the detected operation is to launch an application that corresponds to the icon.  

Inaccurate or ambiguous inputs are caused by gestures that do not correspond to a 

particular portion of the user interface, e.g., a tap gesture that is detected at a touchscreen 

location that is between two icons. Further, in certain situations, e.g., when the device is in a 

user’s pocket, the input may be inadvertent. For example, such a situation may occur when the 

user is in an environment where accurately hitting a target on a screen is difficult, e.g., in a car. 

Further, some users are unable to perform touch operations with a required level of precision, 

e.g., due to age, disability (e.g., hand tremor, visual impairment, cognitive disability, etc.) and so 

on. Other gesture-based input techniques, such as head-tracking, face-tracking, point-scanning, 
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etc. can also receive inadvertent or imprecise input. Incorrect interpretation of received input can 

cause a device to perform an operation does not match the user’s intent, or to not perform an 

operation intended by the user. Thus, the user needs to take additional actions, e.g., an additional 

tap, selecting from a menu, etc. to accomplish a task. 

Current techniques to determine user intent when uncertain input is received include 

displaying a disambiguation screen and/or offering to modify settings that control sensitivity of 

input devices such as touchscreens, gesture recognitions applications, etc. Such techniques are 

static, e.g., rely on settings that are only manually changeable, make no use of context, and do 

not attempt to learn and adapt to user behavior or idiosyncrasies.  

DESCRIPTION 

 

Fig. 1: Framework to disambiguate user input 
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Fig. 1 shows an example framework in which techniques to handle uncertain input, as 

described herein, are implemented. The framework can be implemented using software and/or 

hardware of any computing device, e.g., a mobile device. For example, the framework may be 

included as part of a mobile operating system.   

As shown in Fig. 1, analysis module (102) receives a trigger (100), e.g., based on input 

from a user (126), or inadvertent input. Based on user permissions to access contextual 

information, the analysis module receives such information from various additional sources.  For 

example, when permitted by the user, such contextual input can include one or more of device 

state (104), configuration (106), user context (108), sensor data (110), and data from other data 

sources (112).  Only such contextual inputs as permitted by the users are utilized.  

The analysis module analyzes the input, and stores history and state (114) in a repository.  

The analysis module provides analysis results to resolver (116). The resolver updates the analysis 

results based on options (118) and user preferences (120) to determine outcome (124). The user 

can optionally act upon the outcome, e.g., take action that confirms the validity of the outcome, 

or indicate that the outcome was not what was intended. Such user action serves as a learning 

update to the analysis module. 

The trigger (100) is a user action or uncertain input. The trigger can include, for example, 

a discrete or continuous gesture, e.g., tap, swipe, drag and drop, pinch, etc., a location or path of 

gesture, e.g., points on a touchscreen that were touched, and a timing of the gesture, e.g., the 

beginning, end, or duration of user activity or uncertain input.  

On receiving the trigger, the analysis module (102) performs analysis of data received 

from various sources such as device state, configuration, user context, sensor data, etc. Analysis 

is performed using one or more of machine learning, neural networks, mathematical modeling, 

5

Defensive Publications Series, Art. 514 [2017]

http://www.tdcommons.org/dpubs_series/514



decision trees, rule sets, etc. The analysis module can operate in discrete mode, e.g., upon a user 

request for analysis, or in continuous mode, e.g., the analysis module runs in the background.  

In continuous mode, the analysis module maintains a state. As the analysis module 

receives different inputs and triggers, it updates the state. The history and state (114) is stored in 

a repository. Results produced by the analysis can be actions or gestures that the analysis module 

determines as the user’s intent, or suggestions or corrections to the trigger. In various 

implementations, the analysis module can provide the results with an associated confidence level 

that is determined based on the analysis of the trigger, e.g., the analysis module provides a result 

with confidence level 70%.  

Analysis module 102 relies on inputs (104-112) to perform analysis. Device state (104) 

comprises the current device state, system events occurring within device, etc. based on user 

permissions to access system data. For example, device state includes the user-interface 

hierarchy and look-and-feel, status of applications (open or closed), battery levels etc. 

Configuration (106) comprises device settings, e.g., screen brightness, touch sensitivity, 

accessibility settings, connected Bluetooth devices, user accessibility settings (e.g., which 

accessibility services and features are installed or used), user’s input mechanism type (e.g. head 

tracker, face tracker, mouse, direct touch), etc. as permitted by the user.  

When a user provides consent to access contextual data for purposes of analysis, user 

context (108) comprises elements that the user recently tapped on, recently-performed user 

actions or activities, etc. User context is utilized to understand the most frequently used or 

preferred actions by the user in similar situations.  

Sensor data (110) comprises signals that the user has permitted for use in the analysis and 

classification of user intent, e.g., touch screen (finger dynamic), GPS (location), clock (time) etc. 
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For example, sensor data is used to infer information about current user state, e.g., user is 

driving, device is in the pocket, single-hand usage, etc., or previously performed actions based 

on user’s state, e.g., user habitually opens a specific application, e.g., mapping or navigation 

application, while in the car, etc.  

Other data sources (112) include the state of different applications, local or cloud-based 

application data, etc. that are permitted by the user. The analysis module also utilizes information 

provided by the repository (114), e.g., relevant history and state information pertaining to the 

analysis. 

The analysis module provides analysis results to resolver 116. The resolver looks up 

options (118) and user preferences (120) for any beneficial changes that can be made, for 

example in system settings, user-interface settings, user preferences, etc., and recommends a 

preferred outcome. For example, if the user tapped close to, but not quite exactly on, an icon, a 

possible outcome is to activate the icon as well as to increase a size of the icon. The resolver 

updates the analysis module on the outcome.  

In determining an outcome, a corpus of options (118) is available for the resolver to 

choose from. Options include changing, for example, touch target size, screen layout, display and 

text size, touch sensitivity, dwell time for mouse/face tracker input, target position on the screen, 

etc. User preferences (120) are preferred settings for the device. For example, a user may 

indicate a preference for the device to change the touch target size rather than a location of the 

touch target.  

The outcome (124) presented to the user by the resolver can be in various forms. For 

example, an outcome is to perform the user-intended action as determined by the framework e.g., 

activate an application associated with an icon. Another example is to modify user interface, e.g., 
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increase touch target size, move elements closer to where the user tapped, etc. Other examples of 

actions include modifying settings on the device, e.g., touch sensitivity, brightness, display size, 

etc., displaying a menu of options/suggestions for the user to choose from, etc.  

When permitted by the user, user selections are saved and updated in the analysis 

module. If the outcome as generated by the resolver turns out to not be user intent, the user can 

perform additional actions, e.g., cancel or nullify the outcome by tapping “cancel” or “go back” 

on a menu, etc. If the user consents to utilizing such user action data to update the analysis 

module, the data is used as a learning update for the analysis module.  

The framework described in Fig. 1 disambiguates user-intended actions from inadvertent 

input. Based on usage by a user, the framework can learn from user behavior, and thus, an error 

rate of the framework reduces. With greater usage, the framework of Fig. 1 improves in its 

ability to discriminate better between user-intended actions and inadvertent input. Such a 

framework can determine user intent without having to perform a second action, e.g., provide a 

disambiguation menu, a request for confirmation of action (e.g., an additional tap), etc.     
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Fig. 2: Illustrative implementation 

Fig. 2 illustrates an example of a mobile device with the techniques of this disclosure. 

The framework, as disclosed, executes within the device (200), e.g., a smartphone with a touch 

screen. In Fig. 2(a), a smartphone is in an environment where it experiences vigorous back-and-

forth movement (214), as detected by an on-board accelerometer. For example, such movement 

may be an indication that the user is running with the smartphone in hand (212). The framework 

can also determine, from inputs to the analysis module, that the user is listening to music through 

a music application.  

As shown in Fig. 2(a), the device displays the music app (202) with a currently playing 

song (Song-1, 204). The music app includes navigational buttons, e.g., a “previous” button (206), 

a “pause” button (208) and a “next” button (210). The user provides input, e.g., to skip the 

current song by tapping “next.” However, due to the movement of the device as the user is 

running, and due to single-handed usage, the input may be received as a tap gesture in a region 

between the pause and the next buttons (216), as shown in Fig. 2 (b).  
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The framework analyses the user input to determine that skipping to the next song is the 

likely user intent. For example, such determination may be made based on data inputs from 

various sources, e.g., historical data relating to user activities, user behavior patterns vis-a-vis the 

music application, device state, user context, recent user activity, user preferences, etc. that are 

available, based on user consent, to the framework. 

Fig, 2 (c) illustrates an outcome of the analysis. The music app skips over to song-2 (220) 

(e.g., instead of pausing song-1) based on a determination that the user intended to select the 

“next” button. Further, the device may present additional options to the user, e.g., an option to 

reduce the phone’s touch sensitivity, e.g., when the framework detects that the device is 

experiencing movement. User selection or rejection of the presented options may be additional 

input to the analysis module. 

 In situations in which certain implementations discussed herein may collect or use 

personal information about users (e.g., user data, information about a user’s social network, 

user's location and time at the location, user's biometric information, user's activities and 

demographic information), users are provided with one or more opportunities to control whether 

information is collected, whether the personal information is stored, whether the personal 

information is used, and how the information is collected about the user, stored and used.  That 

is, the systems and methods discussed herein collect, store and/or use user personal information 

specifically upon receiving explicit authorization from the relevant users to do so.  For example, 

a user is provided with control over whether programs or features collect user information about 

that particular user or other users relevant to the program or feature.  Each user for which 

personal information is to be collected is presented with one or more options to allow control 

over the information collection relevant to that user, to provide permission or authorization as to 
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whether the information is collected and as to which portions of the information are to be 

collected.  For example, users can be provided with one or more such control options over a 

communication network.  In addition, certain data may be treated in one or more ways before it 

is stored or used so that personally identifiable information is removed.  As one example, a 

user’s identity may be treated so that no personally identifiable information can be determined.  

As another example, a user’s geographic location may be generalized to a larger region so that 

the user's particular location cannot be determined. 

CONCLUSION 

 The techniques described herein enable disambiguating inadvertent inputs to a device, to 

determine user intent. Inadvertent input may arise from the particular environment the mobile 

device is situated in, due to user inability to properly access and activate input sensors, etc. The 

techniques to disambiguate user input utilize machine-learning to analyze user input, e.g., 

gestures, voice commands, or touches of a touchscreen. The techniques determine an outcome, 

e.g., perform the user-intended action such as activating an application, modify user interface 

e.g., increase touch target size, modify one or more device settings, e.g., touch sensitivity, or 

display a menu of options, etc. If permitted by the user, a subsequent user action is used to 

improve the disambiguation, e.g., as training data. Techniques of this disclosure provide a robust 

user experience for users with different accessibility needs under a wide range of environments. 
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