
Technical Disclosure Commons

Defensive Publications Series

May 04, 2017

A Method To Do Binary Analysis And Provide
Smart Advisory Using Runtime Architecture Layer
To Improve Quality And Performance in
Enterprise Applications
Suprateeka R. Hegde
Hewlett Packard Enterprise

Shridhar Prakash Joshi
Hewlett Packard Enterprise

Follow this and additional works at: http://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Hegde, Suprateeka R. and Joshi, Shridhar Prakash, "A Method To Do Binary Analysis And Provide Smart Advisory Using Runtime
Architecture Layer To Improve Quality And Performance in Enterprise Applications", Technical Disclosure Commons, (May 04,
2017)
http://www.tdcommons.org/dpubs_series/491

http://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F491&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F491&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F491&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series/491?utm_source=www.tdcommons.org%2Fdpubs_series%2F491&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

A Method To Do Binary Analysis And Provide Smart Advisory Using Runtime

Architecture Layer To Improve Quality And Performance in Enterprise

Applications

Abstract

Enterprise applications, by their very nature, need security, performance and robustness in addition

to being reliable and scalable. Providing useful diagnostics and analysis, generating optimized

code to produce such enterprise applications, have always been a research topic in compilers and

system software technologies, and has so far resulted in many successful implementations through

compiler optimizations and performance analysis tools. Here we propose a newer and smarter

unique technique by tapping the potential of Runtime Architecture Layer of an Operating System

Platform, which has been untapped so far.

RTA (Runtime Architecture) Layer mainly includes assemblers, static and dynamic linkers,

loaders, runtime libraries and ELF (Executable and Linkable Format) binary information.

Collectively, this layer provides a substantial amount of crucial information that helps to improve

security, performance and robustness significantly, which is of highest importance in enterprise

application development.

Problem statement

Applications in an enterprise world are usually mission critical in nature. It is imperative that the

developer tool chain used to build such applications provide all the features that help in achieving

security, performance, reliability and scalability.

In a constant endeavor to provide such features, research in system software have been successful

by implementing various source code analyzers, compiler optimizations and performance analysis

tools. While source code analyzers and compiler optimizations have helped in generating efficient

machine code from the source, performance analysis tools have helped in analyzing various

bottlenecks at runtime.

However, in between compilation and runtime, there is RTA Layer which is responsible for all

machine dependent aspects like ABI (Application Binary Interface), program startup, relocations,

shared libraries, loaders, stack unwinding, executable format and many more.

Through research, we found that there is substantial amount of useful information hidden in this

RTA Layer, which is untapped by any of the existing tools mentioned earlier. We found that in the

domain of tool chain based analysis and diagnostics, there is huge gap at the RTA Layer on both

enterprise UNIX and Linux.

This idea significantly boosts a Unix/Linux platform’s Developer Tool Chain features and

capabilities, especially for enterprise application development.

2

Hegde and Joshi: A Method To Do Binary Analysis And Provide Smart Advisory Using R

Published by Technical Disclosure Commons, 2017

Our solution

Based on the problem and our research, we propose a diagnostics and

advisory tool that taps all the hidden information available in the RTA

layer. This tool bridges the gap shown in the Figure 1.0.

With expertise and complete comprehension of developer tool chain

and its usage, we designed our tool and solution in a development

friendly way. Our tool integrates well with existing makefiles. All that

needs to be done is prefixing the path of rtadiag tool for the

compiler/linker line.

Tool Invocation Syntax:

rtadiag <options> compiler/linker <options> <source/object files>

Eg: $/usr/bin/rtadiag --with-db=myprog_diag.db /usr/bin/cc main.c math.o –lm

In the above example, our tool would provide diagnostic and advisory messages on the standard

output in addition to creating a diagnostic database file by name myprog_diag.db.

Database Usage:

In order to get maximum and sustained benefits, our tool provides the creation of a database. All

diagnostics are stored in a database corresponding to application. Such a database can be used to

compare the diagnostics at a later stage after fixing or cleaning up the first set of diagnostics. It

can also be used to ensure that further application development does not result in newer

diagnostics.

The flow of our tool/solution are as follows:

Figure 1.0

Following are some of the highlights of unique Diagnostics and Advisory that our tool provides

using the RTA Layer. Each diagnostic has a detailed documentation associated with it on how to

Source Code Analyzer

Compiler

Optimizations

RTA Layer Info

Runtime Perf Analysis

+ Kernel Tuning

Ab

rtadiag

Static

Linker

Dynamic

Linker

Assembler ELF Info

C Runtime

Library

Terminal /

Standard Output

Diag and

Advisory

Database

Change

the

source

code as

suggested

by the

diagnosti

c and

advisory

messages

DEVELOPMENT/ FIX

PHASE Diagnostic

Backup

ANALYSIS

PHASE

3

Defensive Publications Series, Art. 491 [2017]

http://www.tdcommons.org/dpubs_series/491

fix the problem. Descriptions below are shortened for brevity.

• RTA #102: Too many memory mapped data segments detected. Consider using segment

merging (+mergeseg) linker option for better performance.

In certain cases, merging data segments of all load modules improves paging and hence

performance [1]. It may also help in IPO (Inter-Procedural Optimizations) by using

optimized relocations.

• RTA #096: Number of dynamic symbols have exceeded optimal threshold. Consider using

PROTECTED or HIDDEN attributes of symbols to improve both security and

performance. Consider tuning +nbucket linker option for better hash performance.

A very high number of dynamic symbols increase symbol lookup and processing time

because of more hash-chain [2] conflicts. It also exposes APIs and Data unnecessarily

which impacts security. Hiding and protecting such APIs and Data symbols makes

application better.

• RTA #95: Number of shared libraries and associated symbols exceeded optimal threshold.

Consider using +fastbind linker option.

Some application may have too many shared libraries linked with large number of symbols

spread across them. In such cases program startup time is very high. Using the option

+fastbind and many more suggested techniques may bring down startup time and increase

performance.

• RTA #050: Order of object files present on link line may degrade cache performance by

reducing locality-of-reference. Consider using LORDER tool or use the following

suggested order.

While writing makefiles, it is not possible to manually analyze the right order of objects

files in terms of dependency and call graph analysis. Our tool provides the information on

ordering the objects for best performance.

• RTA #011: Too many relocations for the symbol <name> in file <name>. Consider using

temporary variable as caching mechanism.

Some badly written programs may call a single API or refer to a single data variable from

shared library, multiple times in a single translation unit. This degrades performance.

Suggested to improve the coding style to use temporary variables for caching the actual

value, instead of calling every time.

• RTA #501: Segment Alignment Skew detected. Consider tuning segment alignment using

the linker options +pd/+pi to align segments suitable for this machine.

Sometimes tuning segment alignment helps to improve memory performance by the

underlying kernel. This is a per system setting and may not be applicable on a different

system.

• RTA #695: Relocation types that may degrade performance are seen in large numbers.

Read section 2.4 “Choosing the right data type and structure to ensure better relocations”

of the rtdiag documentation.

4

Hegde and Joshi: A Method To Do Binary Analysis And Provide Smart Advisory Using R

Published by Technical Disclosure Commons, 2017

A program badly written with incorrect data types and at incorrect references may degrade

performance by using relocations and instructions that are slow. Our tool detects such

relocs and advises to use the data types and references in a way that improves performance.

References

[1] Improving Application Performance Using Linker [http://link.osp.hpe.com/u/1y8n]

[2] Generic System V Application Binary Interface [

http://www.sco.com/developers/gabi/latest/contents.html]

[3] Intel Itanium Processor Specific ABI [

ftp://download.intel.com/design/Itanium/Downloads/245370.pdf]

[4] AMD64 Processor Specific ABI [http://www.x86-64.org/documentation/abi.pdf]

Disclosed by Suprateeka R Hegde and Shridhar P Joshi, Hewlett Packard Enterprise

5

Defensive Publications Series, Art. 491 [2017]

http://www.tdcommons.org/dpubs_series/491

http://link.osp.hpe.com/u/1y8n
http://www.sco.com/developers/gabi/latest/contents.html
ftp://download.intel.com/design/Itanium/Downloads/245370.pdf
http://www.x86-64.org/documentation/abi.pdf

	Technical Disclosure Commons
	May 04, 2017

	A Method To Do Binary Analysis And Provide Smart Advisory Using Runtime Architecture Layer To Improve Quality And Performance in Enterprise Applications
	Suprateeka R. Hegde
	Shridhar Prakash Joshi
	Recommended Citation

	tmp.1493907161.pdf.cehLt

