
Technical Disclosure Commons

Defensive Publications Series

March 23, 2017

Smart Button Actions On Mobile Devices
Thomas Deselaers

Daniel Keysers

Victor Carbune

Follow this and additional works at: http://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Deselaers, Thomas; Keysers, Daniel; and Carbune, Victor, "Smart Button Actions On Mobile Devices", Technical Disclosure
Commons, (March 23, 2017)
http://www.tdcommons.org/dpubs_series/433

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/234665544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series/433?utm_source=www.tdcommons.org%2Fdpubs_series%2F433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

SMART BUTTON ACTIONS ON MOBILE DEVICES

ABSTRACT

A system and method are disclosed that trigger a smart response to a button action when

two or more running applications have applicable actions on a mobile device. The system

includes a machine learning algorithm (MLA) built into the operating system that analyzes and

learns from user actions. When the system detects a hardware button press, it retrieves possible

actions/events that may be triggered for the current app and other running apps and processes.

The actions are evaluated by computing a combination of scores involving machine-learned,

rule-based scores provided by the apps and real-time signals such as location, time, user activity,

etc. The system then triggers an action that has the highest score surpassing a predetermined

threshold. The disclosed method would provide improved user experience, and also new, useful

button actions that previously were not available to the user.

BACKGROUND

Currently, smartphones typically have three or four physical buttons and occasionally an

extra button is connected to the phone, e.g. when a headset with a button is connected or when a

stylus with a button is connected. These buttons generally have very fixed use-cases, e.g. power

on, volume up/down and home. Some of the other buttons, e.g. those on a headset or stylus, often

don't do anything at all in many contexts.

Some eBook apps use the volume buttons to flip through pages, which is a good example

of a „smarter‟ use. A problem that arises here is what happens when you are receiving a call

while reading a book. Currently there is no way to decide whether pressing the volume down

button would reduce the volume or switch to the next page.

Apps currently have to implement special handlers in order to provide functionality for

2

Deselaers et al.: Smart Button Actions On Mobile Devices

Published by Technical Disclosure Commons, 2017

these buttons. For the remaining apps that might not use external buttons, when the user clicks

these buttons, nothing happens.

DESCRIPTION

A system and method are disclosed that trigger a smart response to a button action when

two or more running applications have applicable actions on a mobile device. The system may

include a mobile device with an operating system to which an external button is connected. The

operating system of the mobile device may include a machine learning algorithm (MLA).

The system is built into the operating system or a similar basic layer of the program stack

that is running on the device in order to be able to reason about and modify user interactions like

button presses using the algorithm. In addition, the system will require the apps that want to

participate in the process to expose an API that would implement the method. Alternatively, the

OS/system could determine which events have handlers installed in the given app(s) that may be

triggered. The machine learning algorithm would recognize that an event is not handled by an

app, or that the app/process that would handle the event is not the right app to do so. The system

would then determine the most probable user action within the currently running apps/processes

and learn from user actions.

The method is implemented on a mobile device as shown in FIG. 1. In the first step, the

system detects a hardware button press. The button generally does not have an action assigned to

it (i.e. it is not handled by the current app and the only default action is either unspecified or an

often undesired default action like „increase ringer volume‟ on „volume up‟). The system

retrieves the possible action/events that may be triggered for the current app and other running

apps and processes. In the next step, the best matching action among the actions is determined

from the current or running apps and processes. This determination may include computing a

3

Defensive Publications Series, Art. 433 [2017]

http://www.tdcommons.org/dpubs_series/433

combination of scores from several sub-components. The several sub-components may involve

machine-learned scores, rule-based scores , and scores provided by the apps. The scores may also

depend on signals that are available to the system e.g. time of day, location, running apps, most

recent apps used, past actions in the apps, etc. The algorithm determines if the evaluated score

surpasses a required threshold. As shown in FIG. 1 if the evaluated score surpasses the required

threshold, the highest scoring action is triggered, else no action is triggered. In some cases, the

method may also implement a default action, if applicable.

FIG. 1: Method to trigger smart button actions on mobile devices

Additionally, the MLA would be able to learn from the user actions for a particular

context, thereby improving the behavior over time. The feedback may be used in multiple ways:

mapping in the particular context the actual action that would have been preferred (e.g. the action

done by the user after undoing the automated action), and use as negative feedback that this

action should not be done in that particular context in order to not select it next time, when a

similar context appears. In the operating system context, the MLA would consider what apps are

4

Deselaers et al.: Smart Button Actions On Mobile Devices

Published by Technical Disclosure Commons, 2017

running, and a list of registered and unregistered actions thereof, detection of app-specific

context such as text details, media details etc. There could also be detection of user specific

context such as environment signals which includes location, time of day, calendar, previous

actions and so on. The target of the machine learning algorithm is to score a set of actions that

apps have registered and sort them by this threshold score.

The method of app prioritization could also be exposed as an API (application

programming interface). The app implements a small API which evaluates and scores the most

likely action that the app desires. The app may return an empty set of actions if they don't have

any obvious next steps. The app may also indicate the action that corresponds to an undo of each

of the actions performed. This action may be useful if the button pressed has an obvious opposite

(e.g. volume up / down). In the case where there is the "opposite" action, it is useful feedback for

the MLA when the user does something which triggered an action A, and then immediately

undoes action A by doing the opposite. This tells the MLA that it predicted the wrong action A

for the button press. The method of prioritization through API enhances the learning of the

system. The app also exposes the API to trigger one of the suggested actions.

The machine learning model used may be a simple linear model (such as logistic

regression), hidden Markov models or recurrent neural networks, depending on how the signals

are combined. Another option would be a mixed model that combines sparse features with dense

features to predict the score/likelihood of each individual action.

Also, as an alternative to an API, the OS may determine the events (button presses)

installed by handlers that would react to a given event. The different actions may be hard coded

in both the system and the running app.

The following are a few cases where the system and method finds application. When the

5

Defensive Publications Series, Art. 433 [2017]

http://www.tdcommons.org/dpubs_series/433

user receives a call while he is reading a book, the action that should be carried out is prioritized

by the system. If the ringer volume is not at its minimal volume the user would likely want to

decrease the ringer volume. If the volume is already very low, the app (depending on what it

learned from the user) could decide to reject the call.

In another example, a user may be using a web browser with no music playing. If the user

clicks the volume up button, the ringer volume is not increased as the music app is inactive. The

browser now exposes through the API that "back" is an option and that "forward" is it's undo,

and the browser goes back. If the user is happy, the action ends. If the user immediately hits

volume down, the browser goes forward again to undo the action. The system may now use this

to learn that this was not the preferred action and goes on to implement the next probable

alternative.

When the user is exercising, running outdoors, he is listening to music and the button on

the headset with no assigned activity is pressed. There could be three possible actions: ask the

run tracking app to give a current status, pause the music, open the microphone to allow for

communicating with the speech enabled assistant app. Here, the system could trigger the first

action. If the user clicks the button again, it shows that he is not interested in that action, but

maybe wants to communicate with the assistant app.

The user is entering text using a stylus and handwriting in a (web) form. While in some

cases the stylus-button would trigger e.g. an erase action, in a form, the button may better trigger

a „go to next input field‟ action (like hitting „tab‟ on a keyboard).

The user is reading a book with an e-book app, while listening to music on a headset.

Clicking the headset button may either pause the music or flip to the next page. The system may

take into account the duration taken by the user to read a page and time when the page should be

6

Deselaers et al.: Smart Button Actions On Mobile Devices

Published by Technical Disclosure Commons, 2017

flipped. If the page has just been flipped, “pause” is the more likely preferred action.

If the user is watching a video that has no sound, the volume buttons could be used for

fast forward/backward control in the video.

If the user is listening to music on a headset and triggers the volume down button, the

system may disambiguate whether to pause the music entirely because someone else approached

the user, or simply turn the music volume lower. The system may use microphone signals to

detect directed external voice sounds.

The disclosed method would provide improved user experience. Another advantage is

that the system provides new, useful button actions that previously were not available.

7

Defensive Publications Series, Art. 433 [2017]

http://www.tdcommons.org/dpubs_series/433

	Technical Disclosure Commons
	March 23, 2017

	Smart Button Actions On Mobile Devices
	Thomas Deselaers
	Daniel Keysers
	Victor Carbune
	Recommended Citation

	tmp.1490247238.pdf.VPbNm

