
Technical Disclosure Commons

Defensive Publications Series

March 21, 2017

An efficient method to avoid path lookup in file
access auditing in IO path to improve file system IO
performance
Arun Vishnu P K
Hewlett Packard Enterprise

Ramesh Kannan K
Hewlett Packard Enterprise

Rajkumar Kannan
Hewlett Packard Enterprise

Follow this and additional works at: http://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
P K, Arun Vishnu; K, Ramesh Kannan; and Kannan, Rajkumar, "An efficient method to avoid path lookup in file access auditing in IO
path to improve file system IO performance", Technical Disclosure Commons, (March 21, 2017)
http://www.tdcommons.org/dpubs_series/431

http://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F431&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F431&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F431&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series/431?utm_source=www.tdcommons.org%2Fdpubs_series%2F431&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

An efficient method to avoid path lookup in file access auditing in IO path to

improve file system IO performance

Abstract:

One of the biggest challenges in metadata management schemes that sit outside the filesystem layer is

their ability to index meaningful path information of files that are being referenced in an external

system like a database or in a metadata journal file. Path to a file is a critical requirement that allows

both meaningful interpretation of the locality of the file and its metadata and also secondly allows for

more efficient user mode services that can transform the file or its metadata. Additionally path

information is very essential in compliance systems where audit logs need to tell what happened to a

file and where it is located. However when the data path is being audited from layers such as protocols,

it becomes harder to reconstruct the entire path information for all the files given that the protocol

layers do not directly integrate with the underlying Filesystem. The protocol layers would then need to

rely on system cache to get the path data and sometimes this may not be possible making it required for

the protocol to actually do an expensive reverse path walk, reconstructing the path. This actually heavily

degrades the performance of the system. In this paper we discuss a mechanism that allows us to record

enough information about the file using the unique ID of itself and its parent in the protocol layer such

that if and when required the path information can be reconstructed based on a reliable reverse lookup

in a database or a file based journal system. The idea is to have enough information to reconstruct the

path at a later time and outside the system where the information was initially originated from. The

paper also talks of keeping this system consistent under all conditions.

DESCRIPTION OF INVENTION:

Problems Solved:

File access auditing (FAA) is an essential requirement for high secure data centers and also for

organizations which conform to various regulatory compliance requirements. Since FAA happens in the

IO path for every IO request, it is a critical that the auditing framework takes less resources to log audit

information.

In general an audit log contains information like client details, operation details, operation status and

the file object details. One of the crucial information in audit record is the absolute path of the file

object in order to uniquely identify the file object on which the IO operation is performed.

Finding the absolute path needs traversing the file path from the location of file being audited till the

root of the filesystem/mount point. In the typical Linux kernel, an object name dentry carries the name

information and each dentry maintains a pointer to its parent dentry. A module which needs to form the

path has to lock the dentry and then traverse to the parent dentry and do complex string operation to

form a complete file path.

The invention proposes an efficient approach where the audit framework will never do a path lookup for

logging audit record but it logs enough information sufficient for a post-processing tool to build the path

2

P K et al.: An efficient method to avoid path lookup in file access auditing

Published by Technical Disclosure Commons, 2017

when needed. The audit information can be plumped to a database to make the post-processing

efficient.

Prior Solutions:

Description:

The below block diagram explains the different components involved in file access auditing and the

audit event flow. The diagram covers both NFS and SMB protocols.

ADE FS NFSD (Kernel Mode)
Get POID

Get Audit status
Set Audit Status

Kernel mode

User Mode

Audit Daemon

HP SMB Service

Audit Library

NetLink Protocol – Kernel
API for Auditing

 Third Party Audit client

Messaging Service Server

Internal Audit client

Further in the disclosure we selected NFS protocol auditing on the ADE file system to explain the

proposed method. We recommend to turn on auditing for the desired shares before any operation. But

enabling auditing in on a shares which is currently under usage is handled.

Along all mandatory information like, client, user, operation and start, we record three more items.

1) Object name

2) Object ID

3) Parent ID

3

Defensive Publications Series, Art. 431 [2017]

http://www.tdcommons.org/dpubs_series/431

Object name is the name of the object being audited. It can be name of a file or a directory. Object ID is

a unique ID which represents the object. The parent ID is the unique ID of the parent directory where

the current object located.

The Object ID will be provided by the ADE fs which is known as the permanent object ID (POID). The

POID will be a unique identifier of the file/directory throughout its life and will not change even during

rename operation. POID is 128 bit long and will not be reused in the life span of the filesystem.

In the context of auditing a Linux kernel based NFS protocol, a dentry is associated with every operation.

The dentry carries name, inode and parent inode as standard and makes our approach much more

efficient.

All create operations are recoded by default to keep the audit logs self-sufficient for any post-

processing.

Below an example where a share “fs/vfs/fstore/nfs1” is being audited.

When the share get mounted on a client we log the share-root information

Name POID Parent POID

nfs1 10001 10000

Created directory dir1

Name POID Parent POID

Dir1 10002 10001

Created file foo.txt inside dir1

Name POID Parent POID

Foo.txt 10003 10002

Created file foot.txt inside root of the share

Name POID Parent POID

Foo.txt 10004 10001

Here we have two objects named foo.txt is available but with unique POID and parent POID.

4

P K et al.: An efficient method to avoid path lookup in file access auditing

Published by Technical Disclosure Commons, 2017

Path Formation:
The audit events generated from the protocol server will be transferred to audit client, where the post

process happens. The audit client will form the file path on reception of an audit event. IN general audit

clients are dedicated servers which process and maintain the audit logs for future references.

Referring the above example, when audit client receives event

Name POID Parent POID

Foo.txt 10003 10002

It starts forming the path. First it takes the Object name from current event, which is “Foo.txt”. Now the

client will do a look up on the past logs to resolve the name for the parent POID, which is 10002. The

past log

Name POID Parent POID

Dir1 10002 10001

 Will provide you the name for 10002, which is Dir1 and path become Dir/Foo.txt. But the lookup will

not stop as this event has a valid parent POID which is 10001. The process is repeated to figure the

name for 10001 and path become nfs1/dir1/foo.txt, which is a complete path from share root.

Handle rename:
Rename is another challenge with a file path management. As per the above explained mechanism, the

POID which represents a file will remain same even when the file is renamed. In order to make the audit

information self-sufficient for future auditing, we will log old and new name on a successful rename

operation.

But directory rename is much complicated as it affects the entire files and directory inside the directory

being renamed. The FAA modules does not do any extra logging on a directory rename operation. But

the audit client need to do address by a runtime name look up to locate all past logs affected by the

rename and update the path against them. The look will be based on the POID of directory got renamed.

Enabling auditing on share with data:
The best practice is always to enable the auditing before starting any operation on the share. But this is
not guaranteed. When auditing get enabled on share which already has a data, simply logging POID and
parent POID will not be sufficient to build the complete path as we might not logged all directories
involved in forming the path.

In order to handle this we maintain a flag on the inode. This flag be initialized as zero on newly allocated
inode and will be set to one when we log the object. Also we traverse the parent’s parent and so on in
case the flag is not set. Below flow chart explain the control flow:

5

Defensive Publications Series, Art. 431 [2017]

http://www.tdcommons.org/dpubs_series/431

Auditing Enabled

Yes

Audit operation with
object name and

POID

Is Parent dirctory
audited earlier

NO

Audit the parent
directory name and

POID

Mark the parent
directory as audited

This loop will continue
until we reach root of the

share or until we hit a
directory which is already audited

Yes
End of operation

audit

Start auditing
current operation

NO

Advantages:

1) Audit logs generated are self-sufficient to create the complete path. Audit clients need not apply

any ID to path conversion logic to resolve the path. Also audit clients will not contact ADE fs to

resolve a POID to path conversion.

2) Delete and rename operations are handled without any special workflow.

3) Performance impact on protocol IO is minimal.

4) Since the path is not logged in audit log, constructing the path in every IO is completely avoided

thus the impact on IO due to audit logging is reduced to a great extent.

6

P K et al.: An efficient method to avoid path lookup in file access auditing

Published by Technical Disclosure Commons, 2017

5) Not logging the complete path also avoids additional IO (to write the audit log record) and

reduces the audit log size.

Disclosed by P K Arun Vishnu, Ramesh Kannan K and Kannan Rajkumar, Hewlett Packard Enterprise

7

Defensive Publications Series, Art. 431 [2017]

http://www.tdcommons.org/dpubs_series/431

	Technical Disclosure Commons
	March 21, 2017

	An efficient method to avoid path lookup in file access auditing in IO path to improve file system IO performance
	Arun Vishnu P K
	Ramesh Kannan K
	Rajkumar Kannan
	Recommended Citation

	tmp.1490106966.pdf.wzQII

