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DYNAMIC THROTTLING OF IN-APP PROMOTIONS TO REDUCE MARKETING 

SPEND BASED ON MACHINE-LEARNING 

 

In online content placement systems, third-party content items, such as ads, can be 

displayed on information resources to increase the chance that users will purchase, or take other 

actions with respect to, products or services associated with the third-party content items.  In the 

context of mobile applications, apps often run growth campaigns where in-app promotions are 

shown to users to increase awareness about a particular brand, product, or application feature. 

Examples may include promotions for new digital media (e.g., shows, music) which may appeal 

only to certain audiences, and free-to-paid upsell for increasing brand awareness to promote 

products that are commonly bought on a recurring basis.  The promotions are commonly shown 

to each user multiple times in order to make the message stick and increase the possibility of 

conversion (i.e., taking the desired action, for example, clicking on a promotion, clicking through 

to a brand’s website, clicking through a page to watch a show, clicking a button to buy a 

product). 

The above described systems may have problems.  Because content providers or 

marketers generally pay on a cost per-impression basis, most systems put frequency caps on the 

promotions.  However, as noted above, each particular promotion is likely to appeal only to 

certain users.  Since the frequency caps may not take into account a particular user’s attributes, 

the above described systems may not provide the best use of the marketing dollars.  For example, 

if a user has a higher affinity for products similar to “product A” than for “product B,” it may 

make more economic sense for a marketer to show a promotion for “product A” more frequently 

than for “product B” to the user.  Another problem is user satisfaction.  Showing a promotion or 

third-party content item may have a negative impact if the user is being annoyed by the display 
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of the promotion or the content item.  Publishers, ad networks, content and application providers 

and other entities do not want to annoy users as a result of showing promotions or ads because 

users may be less likely to visit the site or use the application which can translate into financial 

loss over the long run.  On the other hand, a user may be less likely to be annoyed if promotions 

appealing to the user are repeated more frequently than promotions that do not appeal to the user. 

One technique for solving these problems is throttling (not showing) a promotion or third 

party content item when a score (e.g., a click score, an auction score) is under a certain threshold.  

The proposed technique adds an additional machine learning model (or a set of machine learning 

models) that predicts the user annoyance effect of showing a promotion or third party content 

item, as opposed to not showing one.  Because the machine learning model takes into account the 

current context, ad spending may not be wasted and user satisfaction can be retained by not 

showing a promotion that is predicted as unlikely to lead to a conversion.  Furthermore, the 

present technique can translate the user annoyance effect into a monetary amount such that an 

intelligent decision can be made with respect to whether the cost of showing a promotion or ad 

may outweigh the revenue of showing the promotion or ad. 

Figure 1 is a block diagram depicting an exemplary environment 1 for implementing the 

present technique. The environment 1 includes at least one data processing system 2, one or 

more content providers 7, one or more content publishers 8, one or more client devices 9, and a 

network 10.  The data processing system 2 can include at least one content placement component 

3, at least one score determination component 4, at least one threshold determination component 

5, and at least one database 6.  The data processing system 2, the content placement component 

3, the score determination component 4, and the threshold determination component 5 can 

include one or more processors, servers, computing devices, memory, logic arrays, circuitry, 
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software or hardware modules, logic elements, or digital logic blocks configured to communicate 

with the database 6 and with other computing devices (e.g., the content provider 7, the content 

publisher 8, and the client device 9) via the network 10.  The memory of the data processing 

system 2, the content placement component 3, the score determination component 4, and the 

threshold determination component 5 can store machine instructions that, when executed by the 

one or more processors, cause the one or more processors to perform one or more of the 

operations described herein.  The content placement component 3, the score determination 

component 4, and the threshold determination component 5 can be or be within separate devices, 

or can be or be within one device. 
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The network 10 can include one or more of any type of computer networks such as the 

Internet, cellular network, WIFI network, WiMAX network, mesh network, Bluetooth, near field 

communication, satellite network, or other data network that facilitates communications between 

the data processing system 2, the content provider 7, the content publisher 8, and the client 

device 9.  The network 10 can also include any number of computing devices (e.g., computers, 

servers, routers, network switches, etc.) that are configured to receive and/or transmit data within 

the network 10.  The network 10 can further include any number of hardwired and/or wireless 

connections. 

The content provider 7 can refer to, or include, an advertiser or other providers of content 

items, such as online documents, blogs, media or advertisements.  The content provider 7 can 

establish an advertisement campaign with advertisements and advertisement selection criteria, 

such as keywords and geographic location.  The content publisher 8 can refer to or include a web 

site operator, such as an entity that operates a web page.  The web site operator or content 

publisher 8 can include at least one web page server that communicates with the network 10 to 

make the web page available to the client device 9. 

The client device 9 can include, for example, mobile computing devices, mobile 

telecommunications devices, smartphones, personal digital assistants, laptop computers, 

notebooks, tablet computers, smart watches, or wearable devices.  The client device 9 can 

include a display such as a liquid crystal display, light emitting diode (LED) based display, 

organic light emitting diode based display, bitmap display, pixel display, electronic ink display, 

or other display configured to visually output content including text, characters, strings, symbols, 

images, or multimedia content provided by the data processing system 2.  The content provider 
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7, the content publisher 8, and the client device 9 can each include one or more processors and 

memory.   

The data processing system 2 can receive a request for a promotion or content item.  In 

some implementations, the content placement component 3 can receive a request from the 

content provider 7 or another component of the data processing system 2 for starting a 

promotional campaign.  A campaign can be constructed in a user interface (UI) and launched by 

marketing teams for messaging users with in-app popups, push notifications, emails, and 

advertisements. The request can also be received from the client device 9 or the content publisher 

8 for requesting a third party content item, such as an ad, to be displayed at the client device 9.  

In some implementations, the request received by the data processing system 2 can include 

various data, including a logged-in user identifier, a cookie identifier or other identifiers 

associated with the user at the client device 9, and contextual information (e.g., placement, 

device information, web page that is being loaded, user’s location, time of day, etc.).  Historical 

data, such as content browsed by users can be logged and stored in a database (e.g., database 6) 

and aggregated on a server (e.g., a server in the data processing system 2, the content provider 7 

or the content publisher 8.).  User interaction with the promotions can also be logged and 

aggregated. These site activities and promotion interaction logs can be fed into a pipeline where 

they can be joined with information (e.g., demographics, language, user’s purchase history, 

user’s preferred form of payment) about the user represented by a user/device identifier, and 

information about the promotions (title text, body text, colors, choice of image).  A machine-

learning model can be trained on an ongoing basis using those items of information.  In some 

implementations, the model can be trained to predict a probability of a user’s conversion, which 

can be proxied by a probability of a click on an appropriate call-to-action button.  For example, 
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the score determination component 4 can determine the probability of a click in the form of a 

click score.  Various machine learning algorithms, for example logistic regression, can be used.  

For situations in which the systems discussed here collect personal information about 

users, or may make use of personal information, the users may be provided with an opportunity 

to control whether programs or features that may collect personal information (e.g., information 

about a user’s social network, social actions or activities, a user’s preferences, or a user’s current 

location), or to control whether or how to receive content from the content server that may be 

more relevant to the user.  In addition, certain data may be treated in one or more ways before it 

is stored or used, so that certain information about the user is removed when generating 

parameters (e.g., demographic parameters).  For example, a user’s identity may be treated so that 

no identifying information can be determined for the user, or a user’s geographic location may be 

generalized where location information is obtained (such as to a city, ZIP code, or state level), so 

that a particular location of a user cannot be determined.  Thus, the user may have control over 

how information is collected about the user and used by a content server. 

In some implementations, the content placement component 3 can fetch a list of content 

item candidates from the database 6 and select one content item by conducting an auction.  The 

content placement component 3 can run one or more predictive models to predict the value of 

showing the content item by estimating a click-through rate and estimating whether the user will 

convert if the user clicks on the content item.  The score determination component 4 can 

determine an auction score for each candidate according to the predictions of the predictive 

models.  The auction score may also take another multiplier in addition to the output of the 

predictive model, for example, the importance or value of this ad relative to other ads, usually in 

the form of a bid that the content provider has agreed to pay if the content provider’s ad is 
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clicked.  The auction score is usually denominated in the form of a monetary amount.  For 

example, the expected dollar value of showing a particular candidate can be determined by 

multiplying the amount that the content provider will pay if the content item is clicked on with 

the likelihood that the user will click the content item if the content item is shown.  The content 

placement component 3 can select a content item based on the auction scores of the candidates. 

In either the promotional campaign context or the content item (e.g., ad) placement 

context, it is possible that showing a promotion or ad can have a negative impact greater than the 

revenue generated.  For example, a user may be annoyed by a promotion or ad displayed to him 

or her, and in turn may stay away from the web site or mobile application.  Thus, the possible 

revenue of showing the promotion or ad to the user can be outweighed by the negative impact 

that the user may be annoyed.  The data processing system 2 can determine whether the negative 

impact of the showing the promotion or ad outweighs the possible revenue generated by 

comparing a score (e.g., a click score or an auction score) with a threshold.  If the score is less 

than the threshold, the promotion or ad placement can be throttled by the data processing system 

2.  As discussed above, the score, such as a click score or an auction score, can be determined by 

the score determination component 4 based on various factors.   

The threshold determination component 5 can be configured to determine the threshold.  

In some implementations, the threshold can be determined with machine learning using multiple 

different thresholds during a warm-up period.  For example, the threshold determination 

component 5 can start each promotion in a warm-up period.  Instead of serving the promotion to 

all traffic, the promotion is served with throttling on different thresholds to small fractions of the 

traffic.  For instance, the different thresholds can include “no threshold,” “threshold=0.001,” 

“threshold=0.005,” “threshold=0.01.”  Each of these thresholds can be applied to a small fraction 
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of the traffic (e.g., 1% of traffic).  Thus, it can be expected that as the threshold increases, 

throttling causes the number of impressions to decrease.  The threshold determination component 

5 can determine a good threshold where while impressions have decreased, the number of 

conversions is still at an acceptable level (e.g., on a use-case basis, 100% of the original 

conversions or 80% of original conversions).  The threshold determination component 5 can 

immediately choose this threshold, or repeat the experiment trying several thresholds near the 

earlier chosen threshold, similar to a binary search, until finding an acceptable loss of 

conversions.  

In some implementations, the threshold determination component 5 can determine the 

threshold by first showing the promotion to all users or a small fraction of traffic during a warm-

up period without throttling.  The threshold determination component 5 can then analyze the data 

from the warm-up period, which can be visualized as a scatter plot of click scores against user 

identifiers.  Business (e.g., the content provider 7 or the content publisher 8) can articulate a 

guide, such as throttling out promotions from the bottom 10% of user requests that are least 

likely to convert on the promotion.  This guide can be used by the data processing system 2 to 

dynamically determine the threshold based on the data, which can be the place to draw the 

horizontal line on that chart.  Once an appropriate threshold is chosen, the warm-up period is 

over.  The data processing system 2 can serve the promotion to all traffic, applying throttling 

using the appropriate threshold. 

In some implementations, the threshold determination component 5 can calculate a cost 

amount of showing an ad, and dynamically determine an auction score threshold.  For example, 

the threshold determination component 5 can predict that showing an ad to a particular user on a 

particular ad impression may reduce the expected amount of time that the user spends on the site 
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by, for instance, 0.5%.  Continuing with this example, assuming that the average spending on the 

site to buy items is $50 over a user’s lifetime.  The threshold determination component 5 can 

determine that a predicted cost of showing the ad is $0.25 as opposed to not showing it.  The 

threshold determination component 5 can choose this value of $0.25 as a threshold for showing 

any ad to this particular user on this particular impression. 

By dynamically and intelligently determining a threshold, and throttling a promotion or 

ad placement if a click score or auction score is below the determined threshold, the present 

technique can avoid annoying users with promotions or ads when they do not have enough value 

to merit the annoyance.  As a result, ad spending may not be wasted and user satisfaction can be 

retained. 
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Abstract 

This document describes a technique of dynamically throttling a promotion or content 

item placement to reduce marketing spending using machine-learning.  A data processing system 

can determine a click score or an auction score based on various factors.  The data processing 

system can further determine a threshold, for example, by predicting an annoyance effect of 

showing the promotion or the content item to a user.  If the click score or the auction score is 

below the threshold, the data processing system can throttle the promotion or the content item 

placement such that the promotion or the content item is not shown to the user. 
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