
Technical Disclosure Commons

Defensive Publications Series

November 30, 2016

Accurate Regression Test Cases Generation in Live
Build Routines
Urs Ganesh Raj
Hewlett Packard Enterprise

Kalapriya Kannan
Hewlett Packard Enterprise

Follow this and additional works at: http://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Raj, Urs Ganesh and Kannan, Kalapriya, "Accurate Regression Test Cases Generation in Live Build Routines", Technical Disclosure
Commons, (November 30, 2016)
http://www.tdcommons.org/dpubs_series/332

http://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F332&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F332&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F332&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series/332?utm_source=www.tdcommons.org%2Fdpubs_series%2F332&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Accurate Regression Test Cases Generation in Live Build Routines

Abstract

Regression testing is typically performed after changing the code of a software program or

system. Identifying the relevant regression tests to be performed to test all of the code changes is

difficult, and usually a manual process. A technique is disclosed that automatically identifies

and selects an optimal set of test cases to cover the impact of changes in the code base.

Description

This disclosure relates to the field of software testing.

Regression test optimization includes the two important related problems of selecting a subset of

test cases that give maximum cost-value benefit, and ordering test cases such that early

attainment of this cost-value tradeoff is achieved. However, due to the growth of the code base

and the growing number of test cases, the intelligence is largely driven by human knowledge.

Selection of the test cases is a difficult problem which is currently best decided by human

knowledge. Typically many test cases are executed based on prior knowledge of the expected

impact of the code changes. This results in side effects, such as a less than optimal selection of

test cases to demonstrate the correctness of the code changes, or expending more testing time

than the actual required time. Improvement requires that changes in the builds dictate the test

cases which get executed, rather than manually associating test cases to changes.

According to the present disclosure, and as understood with reference to the Figure,

identification and selection of the best set of test cases to cover the impact of changes in the code

base is improved through a methodology referred to as SenSei. SenSei automatically associates

“changes observed between different versions” of the code to the necessary test plans. These

associations provide SenSei the ability to identify and list the optimal set of test cases required to

perform regression. SenSei compares two builds and captures the changed modules between

these builds. The changes are further used to mine the repository of test cases, which are tagged

with module names. These module names associated with the test cases specify the modules in

the code that the test cases touch upon. Sensei compares the change modules in the code to the

modules in the test cases, and identifies all test cases that are absolutely required to be executed.

SenSei has two components. A first component analyzes two builds (sets of code files) and

generates the changes between the two builds in terms of the modules (module name) which are

changed between builds. A second component performs the trace/profiling of the test cases

during execution, and builds the directed acyclic graph (DAG) of the critical path taken by the

test cases.

SenSei stores the test cases tagged along with the DAG. SenSei provides an interface that allows

searching the DAGs for the module names. With the names of modules that are changed, a

lookup is performed into the DAG Store. All matching DAGs nodes are identified (that are

associated with the module name in the DAG to the string given in the search). All test cases to

which the DAGs are associated where the matching is observed is listed as regression candidates.

2

Raj and Kannan: Accurate Regression Test Cases Generation in Live Build Routines

Published by Technical Disclosure Commons, 2016

SenSei further optimizes the DAG store to perform a merged view of all common nodes of

different DAGs of test cases. This results in listing the set of those test cases which are common

for the same path, and picks up test cases that have different paths resulting complete coverage.

SenSei employs a multi-stage process. The SenSei Profiling Engine 1 considers each test case

(code + meta data describing the test case) stored in repositories and uses a profiling tool (such

as dtrace) to generate the critical path of the test case. The trace is typically a text file with

several details of information like the input and the execution path within the modules. We limit

our granularity to the level of modules. The SenSei DAG Generation Engine 2 consumes the

trace file and provides a DAG which is the critical path of the test case and is stored a graph store

in the Test Case DAG Store. The SenSei Test Case Optimization Engine 3 performs sub-graph

isomorphism to identify overlapping portions of the graph and picks up the test cases that cover

unique paths. The SenSei Change Tracking module 4 takes the sources and versions that are to

be compared, and automates obtaining the information from the change versioning, and identifies

the module names that are changed. Thus, a set of test cases along with the DAG (set of nodes

representing modules and dependencies) are captured.

By identifying regression test cases according to the above process, the disclosed technique

advantageously identifies the most accurate set of regression tests due to the changes in the code

base. The time needed to identify the correct set of regression test is essentially reduced to the

time it takes to execute the code. It provides 100% coverage and accuracy for quality assurance

purposes. It can directly interface with different build repositories and is automated, requiring no

human intervention to derive the set of regression test cases by considering all dependencies. It

is simple to configure, and requires no maintenance once configured.

Disclosed by Urs Ganesh Raj and Kalapriya Kannan, Hewlett Packard Enterprise

3

Defensive Publications Series, Art. 332 [2016]

http://www.tdcommons.org/dpubs_series/332

4

Raj and Kannan: Accurate Regression Test Cases Generation in Live Build Routines

Published by Technical Disclosure Commons, 2016

	Technical Disclosure Commons
	November 30, 2016

	Accurate Regression Test Cases Generation in Live Build Routines
	Urs Ganesh Raj
	Kalapriya Kannan
	Recommended Citation

	tmp.1480519325.pdf.4xZtq

