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THRESHOLD-FREE SELECTION OF TAXONOMIC MULTILABELS 

 

In online search or content selection systems, significant computational resources are 

expended to classify or categorize electronic documents into topics, concepts, or entities.  For 

example, in a hierarchical taxonomy of categories, such as a tree structure, a top-level label can 

be “health”, and sub-labels can include “sports”, “age”, “cancer”, or “heart”.  A classifier can 

process, parse or otherwise analyze the document to assign one or more labels to the document 

based on the taxonomy.  The classifier can generate a score for each of the labels, and provide 

the labels and the scores to other components or modules for further downstream processing.  To 

keep downstream processes efficient without causing excessive processing of labels, the 

classifier may filter out the labels to return a subset of labels based on comparing a label’s score 

with a threshold.  For example, if the score for the label exceeds the threshold, the classifier can 

return or provide the label for downstream processing.  However, using a threshold-based 

technique to filter out labels may not account for the tree structure of the taxonomy, and it may 

also fail to take into account the likelihood dependencies between all parent nodes and child 

nodes. 

The proposed technique solves this by (1) selecting a set of labels returned by the 

classifier that optimizes certain metrics, such as precision and recall metrics; and (2) using a 

greedy multi-label selection algorithm that optimizes the precision/recall in step (1).  Using these 

techniques, the system can select a subset of labels to return or provide for further processing.  

The greedy multi-label algorithm can select labels iteratively by optimizing the estimated 

expected value of the evaluation metric, e.g., eval(L, G).  The evaluation metric can be any 

metric that evaluates predicted labels L and golden labels G.  During prediction, the golden 

labels are unknown.  Golden labels can refer to a set of ground-truth labels that are applied by 

human raters to an instance. The estimated expected value of the evaluation metric for the 

particular pair of predicted labels L and a set of labels C can be calculated by P(C)*eval(L, C), 

where the P(C) is the predicted probability of a document being a member of class C from a 

classifier. P(C) can be output from a predictive model.  The system can select a set of labels C 

that optimizes P(C)*eval(L, C).  Thus, a threshold is not required to select the set of labels C.   
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This greedy multi-label technique can be more efficient, and thus reduce processor run-

time, as compared to performing an exhaustive search on expected evaluation metrics of all 

possible pairs of predicted labels and possible golden labels. The greedy algorithm can iteratively 

add a single label each iteration to the selected set from the previous iteration.  The greedy 

algorithm can further the one label that leads to the highest expected evaluation metric to the 

selected set of labels. The system can stop the selection when the expected evaluation metric 

starts to decrease or the maximum number of selected labels is reached.  By not using a 

threshold, it is possible to select the number of labels that optimize an expected evaluation 

metric, as opposed to being fixed to a predetermined threshold. 

The evaluation can be customized based on the business requirement.  For instance, 

classifying documents into a taxonomic tree can use a soft evaluation metric instead of the 

commonly used exact match.  A predicted label "/Arts & Entertainment/TV & Video/TV Shows 

& Programs" against golden label "/Arts & Entertainment/TV & Video/TV Shows & 

Programs/TV Sci-Fi & Fantasy Shows" receives partial credits of a match.  Also, since a 

document is unlikely to belong to sibling labels under the same subtree, once a sibling label is 

selected, the other label should not increase the evaluation metric.  This logics can be encoded in 

the evaluation metrics to facilitate the decision. Now the label selection we proposed also uses 

the information to select estimated optimal set of labels.  

Figure 1 illustrates a system 1 that includes a data processing system 5 to perform the 

technique.  The system 1 can include or interact with one or more computing devices 2, one or 

more content providers 3, and one or more content publishers 4 via a network 10.  The data 

processing system 5 can include a taxonomic classifier 6, taxonomic post-processor 7 and a data 

repository 11.  The taxonomic post-processor can include a goodness selection estimator 8 and 

an iterative selector 9.  The data repository 11 can store a taxonomy 12, metrics 13, and 

algorithms 14.  The data processing system 5, taxonomic classifier 6, taxonomic post-processor 

7, goodness of selection estimator 8, iterative selector 9, computing device 2, content provider 3, 

and content publisher 4 can include one or more servers, processors, computing devices, 

memory, logic arrays, circuitry, software or hardware modules, logic elements, or digital logic 

blocks configured to facilitate socially sharing content items. 
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Computing device 2 can include, for example, mobile computing devices, mobile 

telecommunications devices, smartphones, personal digital assistants, laptop computers, 

notebooks, tablet computers, smart watches, or wearable devices.  The computing device 2 can 

include a display such as a liquid crystal display, light emitting diode (LED) based display, 

organic light emitting diode based display, bitmap display, pixel display, electronic ink display, 

or other display configured to visually output content including text, characters, strings, symbols, 

images, or multimedia content provided by a data processing system 5.  The computing device 2 

can include an input interface designed and constructed to receive input from a user.  Input 

interfaces can include or provide, for example, touch input, keyboard, mouse, motion, sensor, 

location sensor, touchpad, trackpad, or a scroll wheel.  The network 10 can include one or more 

of any type of computer network such as the Internet, cellular network, WIFI network, WiMAX 

network, mesh network, Bluetooth, near field communication, satellite network, or other data 

network that facilitates communications between the data processing system 5 and computing 

device 2. 

A content provider 3 can refer to, or include, an advertiser or other provider of content 

items, such as online documents, blogs, media or advertisements.  The content provider 3 can 

establish an advertisement campaign with advertisements and advertisement selection criteria, 

such as keywords and geographic location.  The content provider 3 can further establish a budget 

or spend amount for the advertisement campaign.  The content publisher 4 can refer to or include 

a web site operator, such as an entity that operates a web page.  The web site operator or content 

publisher 4 can include at least one web page server that communicates with the network 10 to 

make the web page available to the computing device 2. 

The taxonomic classifier 6 can receive an online document (e.g., web page, article, blog, 

news article, etc.) including various terms, keywords, phrases, text, metadata, or other content.  

The taxonomic classifier 6 can access a taxonomy 12 from data repository 12.  The taxonomic 

classifier 6 can retrieve, from the data repository 12, a taxonomy including a tree structure of 

labels.  The taxonomic classifier 6 can be configured with a multi-class classification framework 

to analyze the document and output a probability for each class.  The taxonomic classifier 6 can 

output a probability for each category in the taxonomy.   
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The taxonomic post-processor 7 can receive or obtain, from the taxonomic classifier 6, 

the output probability for each category in the taxonomy.  The taxonomic post-processor 7 can 

select one or more metrics 13 from data repository 11 to use to further process the output 

probability for each category in the taxonomy received from the taxonomic classifier 6.  The 

taxonomic post-process 7 can provide the selected metrics to a goodness of selection estimator 8.  

The goodness of selection estimator 8 can include a script, function, or module that analyzes the 

scores for each category. 

The goodness of selection estimator 8 can estimate a precision metric and a recall metric 

for each category.  Precision (or positive predictive value) can refer to the fraction of retrieved 

instances that are relevant. In this case, precision can refer to the number of labels identified by 

the taxonomic classifier 6 that are relevant to the document.  Recall (or sensitivity) can refer to 

the fraction of relevant instances that are retrieved.  In this case, recall can refer to the fraction of 

labels that are scored correctly.  The goodness of selection estimator 8 can combine the precision 

and recall metrics to generate a single metric for an expected value of goodness.  The goodness 

of selection estimator 8 can combine this metric with the score received from the taxonomic 

classifier 6.   

The data processing system 5 can determine this combined expected value of goodness 

for each score for each label returned from the taxonomic classifier 6.  In some cases, this score 

can be deterministic (0 or 1).  The iterative selector 9 can use this score to iteratively add 

categories to the set of predicted labels, given an input of probabilities of all the labels received 

from the taxonomic classifier 6 and using the goodness of selection estimator 8 to compute a 

score for the combination of labels.  The iterative selector 9 can use various other techniques or 

algorithms to identify the subset of labels.  In some cases, the iterative selector 9 can be 

configured with a greedy algorithm or technique to identify a final set of labels.   

For example, the iterative selector 9 can identify all the probabilities for all the categories 

from the taxonomic classifier 8.  The iterative selector 9 can launch the goodness of selection 

estimator 8 to determine an expected value of goodness score.  This expected value of goodness 

score can include or be based on a precision score, recall score, a score based on a combination 

of the precision and recall score, a precision recall weighted sum, or some other score.  The 
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iterative selector 9 can identify one or more labels that optimize this expected value of goodness 

score. 

In the first iteration, the iterative selector 9 can select a top ranking label based on the 

score from the taxonomic classifier 6.  The iterative selector 9 can launch the goodness of 

selection estimator 8 to determine an expected value of goodness for this first label.  The 

iterative selector 9 can determine that the expected value of goodness for the first label is 

satisfactory if the score is greater than  zero, a dynamic threshold, or a predetermined threshold.  

The threshold can close to zero in order to filter out labels that have a likelihood close to zero, as 

opposed to a greater threshold traditionally used for identifying a final sets of the labels. 

The iterative selector 9 can then select a second label that has a second highest 

probability score based on the taxonomic classifier 6.  The iterative selector 9 can execute the 

goodness of selection estimator 8 to determine an expected value of goodness for the 

combination of the first label and the second label.  The iterative selector 9 can determine that 

the combination of the first label and the second label improves the expected value of goodness.  

Responsive to determining that the combination of the first label and the second label improves 

the expected value of goodness as compared to just the first label, the iterative selector 9 can add 

or select the second label for inclusion in the subset. 

The iterative selector 9 can continue to select labels, compute the expected value of 

goodness for the combination, and then compare the expected value of goodness based on the 

combination of labels with the previous expected value of goodness to determine whether to add 

the label to the subset.  Thus, the iterative selector 9 can identify a combination of labels with a 

high score.   

The iterative selector 9 can stop at a maximum number of iterations, such as 5, 6, 7, 8, 9 

or 10.  The iterative selector 9 can start with a minimum number of iterations, such as 2, 3, 4, or 

5.  The iterative selector 9 can have a dynamic maximum number of iterations that can be based 

on the number of scores greater than a threshold for labels received from the taxonomic classifier 

6.  

Thus, the present system can filter out the labels received from a classifier to generate a 

subset of labels and provide the subset of labels for downstream processing, thereby improving 
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the efficiency of any downstream processing.  
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