
Technical Disclosure Commons

Defensive Publications Series

September 02, 2016

3D Object Search System
Wallace P. Scott

Follow this and additional works at: http://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Scott, Wallace P., "3D Object Search System", Technical Disclosure Commons, (September 02, 2016)
http://www.tdcommons.org/dpubs_series/267

http://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series/267?utm_source=www.tdcommons.org%2Fdpubs_series%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Attorney	Docket	No.	0129‐004P01	

3D OBJECT SEARCH SYSTEM

TECHNICAL FIELD

[0001] The subject matter of the present disclosure relates to searching a large

repository of 3D models (e.g., objects) to find models similar to a query model. More

specification, the subject matter of the present disclosure relates to semi-structuring of the

3D model data and implementing of approximate similarity algorithms in the search.

Such a search may detect potential intellectual property infringements, both physical and

virtual.

BACKGROUND

[0002] The boundaries between physical and virtual commerce are becoming

increasingly blurred as online marketplaces, 3D printing and scanning, and file sharing

open up new opportunities to businesses and consumers. Such technologies have many

intellectual property owners worried that their objects now may be pirated with ease, thus

choking off royalties or premiums needed to recoup development efforts of those objects.

Providers of the technologies and channels through which pirating occurs are also hurt by

this situation, due to damaged reputation, increased liability, and wasted effort spent

surveilling for illicit activity. The damage stemming from 3D object piracy is perhaps

most immediate to the consumer, whose safety may be endangered by the degradation of

critical operating features of objects and by the absence of control over its physical

production.

[0003] Traditional duplicate-detection tools, such as file checksums and Digital

Rights Management, are not sufficient to guard against 3D object piracy. Because 3D

objects are generated from easily modified files, objects are often tweaked slightly and

resold, still violating copyright but avoiding detection. In a way, this issue is the inverse

of traditional counterfeiting—rather than trying to create and pass off a near-identical

copy of an established brand’s product, the attacker is trying to claim that the object is his

original creation by modifying it from its authentic form.

SUMMARY 2

Scott: 3D Object Search System

Published by Technical Disclosure Commons, 2016

Attorney	Docket	No.	0129‐004P01	

[0004] Systems and methods described here provide comparative analysis results

between 3D objects that may exhibit superficial and/or abstract similarities. The

objective is to efficiently sort through large datasets (e.g., a library of 3D models) to

detect not just duplicates to a query object but similar objects that may have been derived

from the query object, and to provide quantitative descriptors of object similarities.

Implementations include a novel method of consistently structuring 3D model data that

represents a given model as a feature tree with varying levels of ‘abstraction’ in order to

avoid skewed comparison results due to superficial model modifications. Because tree

comparison algorithms are computationally expensive, this full structuring of 3D model

data can be represented as a semi-structured histogram or signature accompanied

metadata that relates the data in each bin to its level in the feature tree hierarchy in order

to deliver quicker search and comparison results. These results can be achieved with a

high degree of efficiency from very large datasets (such as an online marketplace or

repository for CAD files) by using an approximate nearest or k-nearest neighbor

algorithm (such as Locality-Sensitive Hashing) and an approximate Earth Mover’s

Distance algorithm (e.g., Signature EMD or Wavelet EMD). Implementations draw

high-level model similarity and low-level feature similarity conclusions with minimal

computational expense (linear time runtime) and with any desired level of probability.

Such conclusions, in combination with feature tree metadata, provide the necessary tools

to perform extensive and accurate follow-up analysis on whether intellectual property

infringement has occurred in one or more 3D objects.

[0005] The details of one or more implementations are set forth in the

accompanying drawings and the description below. Other features will be apparent from

the description and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 is a block diagram that illustrates an example of a 3D model

similarity search system, in accordance with disclosed implementations.

[0007] FIG. 2 is an example diagram that illustrates a 3D model of a lightbulb

represented as its constituent primitive surfaces that make up the hierarchical feature tree,

using a surface age metric, according to an implementation.
3

Defensive Publications Series, Art. 267 [2016]

http://www.tdcommons.org/dpubs_series/267

Attorney	Docket	No.	0129‐004P01	

[0008] FIG. 3 is an example diagram that illustrates the influence of a given

surface’s bounding box volume and Gaussian curvature on its surface age, according to

an implementation.

[0009] FIG. 4 is an example diagram that illustrates a 3D model represented as a

hierarchical feature tree and a semi-structured histogram, using the surface age metric,

according to an implementation.

[0010] FIG. 5 is a flow diagram of an example process for searching a large,

unstructured set of 3D models for overall similarity and specific feature similarity to a

query model, according to an implementation.

[0011] FIG. 6 illustrates an example process for generating a feature tree,

according to an implementation.

DETAILED DESCRIPTION

[0012] FIG. 1 illustrates an example block diagram of a 3D model similarity

search system, in accordance with disclosed implementations. The 3D model similarity

search system 100 can be embodied, for example, on one or more computing devices,

such as server 110, and client 180. Server 110 may be a mainframe, a server, a group of

servers, a rack system, networked personal computers, etc., that include one or more

processors formed in a substrate, which are configured to execute instructions stored in a

memory. The instructions, when executed by the one or more processors, make the server

110 a specially programmed machine, The server 110 may be a combination of two or

more computing devices. For example, two or more computing devices may be

physically or logically distinct from each other but in communication with each other via

a communications network (not shown in FIG. 1), operating as server 110. The server

110 may be accessible to other computing devices via a network 150, such as the Internet.

[0013] The server 110 may include modules or engines stored in memory, e.g.,

non-transitory memory such as RAM, flash, disk, optical drives, cache, main memory,

etc. The modules may include a model abstraction engine 120. The model abstraction

engine 120 may take as input a computer aided design (CAD) model and generate an

abstraction of the model that can be used to find similar models in a repository. The

abstraction may be a histogram based on surface age or a signature based on surface age,
4

Scott: 3D Object Search System

Published by Technical Disclosure Commons, 2016

Attorney	Docket	No.	0129‐004P01	

as will be explained in more detail below. The modules may also include a model

comparison engine 130 configured to compare a query model to models in a repository to

find models in the repository with a sufficient match. In some implementations, the

server 110 may include model repository abstractions 142. Model repository abstractions

142 may be abstractions of 3D models stored in 3D model repository 160, which may be

stored on server 110 or may be located remotely from server 110. The model repository

abstractions 142 may be calculated ahead of time (e.g., prior to a query) or may be

calculated at the time of the query. In some implementations, an entry in the model

repository abstractions 142 may be generated each time a model in the 3D model

repository 160 changes. For example, the server 110 may include an engine similar to a

web crawler that looks for changes to 3D models in the 3D model repository 160 and

generates a new model repository abstraction 142 for models that have changed. As

another example, the server 110 may be notified when a model has changed and may

generate a new model repository abstraction 142.

[0014] The server 110 may also include a model comparison engine 130. The

model comparison engine may receive a query object, or in other words a CAD model for

comparison against objects in the 3D model repository 160. The model comparison

engine 130 may use model abstraction engine 120 to generate an abstraction of the query

object and then compare the abstraction of the query object to the model repository

abstractions 142.

[0015] The system 100 may also include a remote client 180. The remote client

180 may be another server, a personal computing device, or a smartphone. The client 180

may be in communication with server 120, e.g., via network 150, and may be used to

submit a query object, e.g., a 3D model file, to the server 110.

[0016] Feature Extraction and Model Abstraction

[0017] Each Computer Aided Design workflow begins with primitive geometric

objects that gradually acquire greater detail and often ends with widely differentiated

objects or assemblies. No single step in the modeling process can be said to impart an

object’s ‘identity;’ rather, it emerges over a series of modeling steps and is expressed

through characteristic properties of each of these steps. While a simple object similarity

search (e.g., a conclusion drawn from a random sampling of surface coordinates) is
5

Defensive Publications Series, Art. 267 [2016]

http://www.tdcommons.org/dpubs_series/267

Attorney	Docket	No.	0129‐004P01	

sufficient in many applications, such a method would be vulnerable to ‘rolling back’ a

model’s history by deleting features and perhaps subsequently introducing new features.

In order to weigh similarities between objects while avoiding false negatives due to

superficial feature differences, the objects being compared are compared at varying levels

of abstraction (i.e., from primitive shapes to fully detailed models). In order to

accomplish this, the feature similarity query system may build a feature tree, where each

node in the tree represents one or more surfaces of a volume in the CAD model that have

a similar surface age. FIG. 6 illustrates an example process for generating a feature tree.

[0018] As a first step in building the feature tree, the feature similarity query

system may perform feature extraction across one or more rounds of model abstraction.

The input to the feature extraction and model abstraction is a clean CAD model, i.e., one

that contains a set of only manifold surfaces and ‘watertight’ volumes, not ‘polygon

soup’ or point cloud models. The system discretizes the model into its constituent

volumes (step 605) if more than one volume is present (e.g., if the model is an assembly

of separate parts). Each surface patch of the constituent volume was introduced

somewhere along the model’s abstraction spectrum, and larger surfaces with lower

curvature tend to be more ‘fundamental’ to an object’s identity than smaller, more tightly

curved surfaces. FIG. 2 is an example diagram that illustrates a 3D model of a lightbulb

represented as its constituent primitive surfaces that make up the hierarchical feature tree

that can be analyzed using a surface age metric. In the example of FIG. 2, the light bulb

100 is first separated into a plurality of surfaces 205 to 235 as predefined by the input

model’s CAD data. As indicated above, the system may assume a clean CAD, but an

additional precautionary step may be taken to ensure the CAD data is represented in its

simplest, cleanest possible form.

[0019] In order to construct a feature tree that represents an object and that allows

the system to produce increasingly abstract representations of an object by successively

trimming off the tree’s lowest-level branches, implementations define a metric, referred

to as surface age, that enables the system to determine each surface’s proper place in a

node of the feature tree (step 615). A different way of stating this problem is that the

system determines which ‘child’ nodes (lower-level surface patches) belong to ‘parent’

nodes (more abstract surface patches) using the surface age.
6

Scott: 3D Object Search System

Published by Technical Disclosure Commons, 2016

Attorney	Docket	No.	0129‐004P01	

[0020] The definition for this metric can be expressed as:

݁݃ܣ ൌ
ሺࢻ ∗ ܸሻ ൅ ሾሺ1 െ ሻࢻ ∗ ࢼ ∗ ܵሿ

2ߢ ൅ 1

where α is the skewness or ‘flatness’ of the bounding box of the surface (i.e., its deviation from a

perfect cube), defined as:

ࢻ ൌ ൞

ܾܿ
ܽଶ
, ܾ, ܿ ് ܽ

1, ܽ ൌ ܾ ൌ ܿ

where a, b, and c are the lengths of the bounding box sides, listed from largest to smallest values,

respectively,

β is a normalization factor for comparing the surface area of the bounding box of the surface to

the volume of the bounding box of the surface, defined as:

ࢼ ൌ 2ሺሺ1 ܽ⁄ ሻ ൅ ሺ1 ܾ⁄ ሻ ൅ ሺ1 ܿ⁄ ሻሻ

V is the bounding box volume of the surface (i.e., the smallest box that can fully contain a surface

and is aligned with the surface’s principal axes),

S is the surface area of the bounding box of the surface,

and κ is the Gaussian curvature of the surface.

[0021] The greater the value of the age of a surface, the higher it is likely to

reside in a node in an object’s feature tree (i.e., to have more levels of child nodes

beneath it). As discussed above, each node in the feature tree may represent one or more

neighboring surfaces with similar age. Neither the bounding box volume nor the

curvature of a surface is sufficient by itself to describe that surface’s place in a feature

tree. A large, flat surface is likely to be part of a high-level feature, but it may have a flat

bounding box with very small volume. Therefore, in order to produce a set of widely

different ages by which to sort out a model’s constituent surfaces, the system divides the

size of the surface (expressed by a combination of its volume and surface area) by the

squared Gaussian curvature to produce values that tend to be either large or very small.

This is the most condensed expression for producing an arrangement of surface

identifiers that assists the system in locating the most ‘low-level’ surfaces among the

surfaces of the volume. FIG. 3 is an example diagram that illustrates the influence of a

given surface’s bounding box volume and Gaussian curvature on its surface age. In the
7

Defensive Publications Series, Art. 267 [2016]

http://www.tdcommons.org/dpubs_series/267

Attorney	Docket	No.	0129‐004P01	

example of FIG. 3, surface 300 has an age much greater than 1. The system may

determine this by the size of the bounding box and the Gaussian curvature. Surface 305

has an age of approximately 1, and surface 310 has a surface age much less than 1.

[0022] Once all the ages for a volume’s surfaces have been derived, the system

may define those with the smallest values, defined for example using a statistical

grouping method, as the input surfaces to a node completion routine. The node

completion routine is as follows:

1. Starting with a first surface and its age, find each neighboring surface,

where a neighboring surface shares a common boundary with the first

surface.

2. If the age of the neighboring surface is within a given similarity range of

the starting or first surface (i.e., ࢽ	 ൐ 	 หܽ݃݁௦௧௔௥௧௜௡௚ െ ܽ݃݁௡௘௜௚௛௕௢௥ห, where

γ is the similarity threshold), these surfaces are assigned to the same node

in the feature tree.

3. Repeat this search for all the neighbor surface’s neighbors, i.e., identifying

neighbors with an age within the same γ value until no new surfaces are

added to the node. In other words, the system may stop looking at

neighbors when all neighboring surfaces are much larger or much smaller

surfaces. This allows the system to ‘leapfrog’ surfaces belonging to

potential children (e.g., surfaces in a child node of the current node and

capture the entire node currently being analyzed.

[0023] The surfaces with the given similarity are tentatively defined as the

lowest-level nodes of the volume’s (and therefore, the object’s) feature tree, but it cannot

yet be assumed with certainty that all these surfaces are lowest-level children.

Accordingly, the system may perform a parent-child node testing routine on each node

within the lowest level. The set of surfaces that are placed in the lowest-level node may

be considered collectively as a child node. The system may perform the parent-child

node testing routine as follows:

1. Starting with the child node, the ages of its surfaces, and the bounding box

of the full node, or in other words the set of surfaces in the child node, find

neighboring surfaces that either 1) share a common boundary or 2) have a 8

Scott: 3D Object Search System

Published by Technical Disclosure Commons, 2016

Attorney	Docket	No.	0129‐004P01	

bounding box that significantly overlaps that of the node’s (i.e., ࢿ ൏

௡௢ௗ௘,௖௛௜௟ௗݒ ∩ ௦௨௥௙,௡௘௜௚௛௕௢௥ݒ , where ε is the bounding box overlap

threshold). The surfaces that either share a common boundary or have a

bounding box that significantly overlaps are connected surfaces.

2. If the ages of the connected surfaces are outside of a given similarity range

from the age of the (child node’s average surface age, at least part of the

parent node has been found. The similarity range used to determine a

parent node is different from the similarity threshold γ in that this

threshold indicator is much greater. Put another way, the age of the

neighbor node should be much larger than the child node’s average

surface age.

3. Using this parent node surface, run the node completion routine.

4. Using this parent node, find all the child surfaces of that node by searching

for all connected surfaces with much smaller ages or those whose

bounding boxes are entirely enclosed by the parent node bounding box

surface.

a. Run node completion routine on child surfaces to find complete child

nodes.

[0024] Any surface-to-node assignment conflicts (whether during the node

completion or parent-child test routines) are resolved by reverting back to the results of

the prior assignment and continuing on with the routine. If a parent node has not been

identified for a child node after searching through the input set, the search is expanded to

the remainder of the volume (which guarantees the assignment of a parent node,

assuming clean CAD geometry as input). A parent node is guaranteed by this method to

be found, if the starting node is not the highest-level node itself of the feature tree (in

which case, the routine is already complete).

[0025] At this point, the entire first level of the feature tree has been found.

Characteristic information of these features are recorded (step 625) before the features are

deleted from the model. In order to clean up the CAD model to provide the proper input

to the routines described above, the system may use a surface fitting and cleanup routine

(step 635). The system may use conventional or later developed surface fitting and
9

Defensive Publications Series, Art. 267 [2016]

http://www.tdcommons.org/dpubs_series/267

Attorney	Docket	No.	0129‐004P01	

cleanup routines. The objective of this routine should be to minimize deviation from the

original surfaces while minimizing the number of control vertices needed to construct the

new surfaces. Once a new, clean, ‘abstracted’ CAD model has been generated, the

system may repeat the Feature Extraction and Model Abstraction routine (step 640, No)

building a new tree with the surfaces generated by the fitting and cleanup routine. This

system may repeat this process until no significant age differentiation exists between the

surfaces composing a volume, and the highest-level node of the volume’s feature tree can

be said to have been reached. This is considered a flat tree condition (step 640, Yes). For

models containing more than one volume, the same process is repeated using volume

ages (analogous to surface ages) (step 645, Yes) until the highest-level node of the

model’s feature tree can be said to have been reached (645, No).

[0026] Depending on the precise implementation of the following model

comparison procedures, each input model’s tree structure may be represented either as a

histogram or a histogram signature that expresses its set of surface ages (FIG. 4). In FIG.

4, a histogram 405 {hi} is defined as a 1-dimensional set of vectors i mapped to the set of

non-negative real numbers that measure the surface age. The system may also use a

histogram signature, which includes compressing the histogram data by eliminating

empty bins and grouping or clustering in all data ‘nearby’ a mean value. A histogram

signature {sj = (mj, wj)} is defined as a 1-dimensional set of feature clusters, each

represented by its mean mj and by the fraction wj of surface ages that belong to that

cluster j. The system may mark each entry to the histogram 405 or signature with a node-

assignment metadata tag, which carries information about the node in the feature tree to

which the surface age belongs. The metadata tag may aid the system in determining node

assignment in the feature tree because the surface ages are correlated, but not exact

pointers, to feature tree nodes.

[0027] The system may not use the feature tree directly for feature classification

in the following section. Instead, the feature tree, by capturing higher levels of abstraction

in the histogram and signatures, enables the system to detect skewing of the surface age

data of high-level nodes away from their originals simply by introducing superficial

model modifications, like feature addition, deletion, or morphing. It is also useful so that

post-processing procedures following the model comparison routines (e.g., feature
10

Scott: 3D Object Search System

Published by Technical Disclosure Commons, 2016

Attorney	Docket	No.	0129‐004P01	

similarity visualization) can examine node-assignment metadata in conjunction with

high-level model similarity data or low-level feature similarity data between models.

This information, i.e., the signature or the histogram, serves as the input to the feature

classification routines described in the following section. The system may store the

feature tree, and/or the histogram and signature that results from the Feature Abstraction

and Model Abstraction, for example as model repository abstractions 142 of FIG. 1.

Thus, the system maybe able to access this information for comparison with a query

model.

[0028] Feature Classification

[0029] FIG. 5 is a flow diagram of an example process 500 for searching a large,

unstructured set of 3D models for overall similarity and specific feature similarity to a

query model, according to an implementation. Process 500 may be performed by a 3D

model search system, such as system 100 of FIG. 1. Process 500 may include query

repository pre-processing (505), as described above with regard to FIG. 6 (i.e., feature

extraction and model abstraction with regard to each model in a 3D model repository).

Step 505 may be performed ahead of receiving a query model. Process 500 may also

include query model pre-processing (510). Query model pre-processing includes

performing feature extraction and model abstraction on the query model, again as

described above with regard to FIG. 6.

[0030] While comparing two models using their tree structures may be the most

thorough method to evaluate similarities between them, tree comparison algorithms are

notoriously process-time-intensive (with many run times increasing at rates of O(n2),

O(n4), etc., as the input size n increases linearly). In fact, for all but the most strictly

constrained tree comparisons, an optimal approach to this type of problem is

mathematically intractable. Therefore, the system disregards a thorough tree comparison

procedure in favor of two successive, approximate similarity procedures. The first

similarity procedure may narrow down the set of models in the repository (e.g., in model

repository abstractions 142) likely to exhibit some meaningful level of similarity to the

query model (515). The second similarity procedure may serve as a detailed follow-up

comparison between the narrowed-down set and the query model (520). In some

implementations the similarity procedures may be Locality-Sensitive Hashing (LSH) and
11

Defensive Publications Series, Art. 267 [2016]

http://www.tdcommons.org/dpubs_series/267

Attorney	Docket	No.	0129‐004P01	

Earth Mover’s Distance (EMD). While LSH and EMD are used for ease of explanation

below, implementations may use other similar similarity procedures

[0031] The system may use a procedure like Locality-Sensitive Hashing (LSH) to

quickly find similar entries to a query item in large, high-dimensional datasets. LSH has

been applied to Internet search engine indexing, where response speed and accuracy are

critical. LSH delivers probabilistic results, meaning that while it cannot guarantee an

exact nearest or k-nearest neighbor(s) answer, the level of certainty of its answer can be

pushed to any arbitrary probability (though at increased computational expense). The

premise behind the family of LSH algorithms is that since any two points that lie close to

each other in Euclidean space will have small l2-norm (or, distance) values when viewed

from any given direction, one can sample these values from arbitrary directions with

increasing certainty of ‘closeness’ as the number of samplings increase. These

algorithms generally run in linear time, or O(n).

[0032] The E2LSH function, belonging to a popular implementation of LSH, is

defined as follows:

݄௫,௕ሺݒԦሻ ൌ ቞
Ԧݔ ∙ Ԧݒ ൅ ܾ

ݓ
቟

where ݔԦ is a random vector selected from a Gaussian distribution, b is a random variable

uniformly distributed between 0 and w to aid in error analysis, and ݒԦ is a query vector in a high-

dimensional space.

[0033] Given a failure probability threshold (or degree of desired approximate

certainty), the number of iterations of this function that the system performs is defined as

follows:

ܮ ൌ 	
logہ ۂߜ

logሺ1 െ ܲ௞ሻ

where L is the number of iterations, δ is the failure probability, P is the hash table size (a large

prime number), and k is the number of dimensions of the vector space.

[0034] By providing the query histogram or signature as a high-dimensional

vector, and the search space of models as a set of high-dimensional vectors, the system

then define the desired level of confidence and ‘closeness’ threshold of nearest neighbors

before running the LSH routine. The output of this routine is a vastly reduced

12

Scott: 3D Object Search System

Published by Technical Disclosure Commons, 2016

Attorney	Docket	No.	0129‐004P01	

dissimilarity space on which to perform more extensive analysis, produced in linear

(rather than exponential or worse) time (O(n)).

[0035] Once the nearest neighbors of the query model have been found, the next

approximate similarity procedure can be driven by the Earth Mover’s Distance (EMD) or

similar algorithm. A formal definition of the Earth Mover’s Distance algorithm as a

linear programming problem is as follows:

Solve for a Flow F = [fij], with fij the flow between histogram bins pi and qj, that minimizes the

overall cost:

,ሺܲܭܴܱܹ ܳ, ሻܨ ൌ 	෍෍݀௜௝ ௜݂௝

௡

௝ୀଵ

,

௠

௜ୀଵ

subject to:

௜݂௝ 	൒ 0										1 ൑ ݅ ൑ ݉, 1 ൑ ݆ ൑ ݊

෍ ௜݂௝

௡

௝ୀଵ

	൑ 1										௣೔ݓ	 ൑ ݅ ൑ ݉

෍ ௜݂௝

௠

௜ୀଵ

	൑ 1										௤ೕݓ	 ൑ ݆ ൑ ݊

෍෍ ௜݂௝

௡

௝ୀଵ

௠

௜ୀଵ

ൌ 	minሺ෍ݓ௣೔

௠

௜ୀଵ

,෍ݓ௤ೕ

௡

௝ୀଵ

ሻ

Once the optimal flow F has been found, the EMD metric is defined as the work normalized by

the total flow:

,ሺܲܦܯܧ ܳሻ ൌ
∑ ∑ ݀௜௝ ௜݂௝

௡
௝ୀଵ

௠
௜ୀଵ

∑ ∑ ௜݂௝
௡
௝ୀଵ

௠
௜ୀଵ

[0036] EMD has been demonstrated to produce a true dissimilarity metric that is

more robust than histogram matching techniques (such as Minkowski-form distance, χ2

statistics, etc.) and has been applied extensively in the field of computer vision. It is

particularly advantageous over other methods in its ability to detect matches within

subsets of data, instead of only a ‘high-level’ dissimilarity metric. However, EMD also

suffers from high computational complexity (O(n3logn), partly because it is an

13

Defensive Publications Series, Art. 267 [2016]

http://www.tdcommons.org/dpubs_series/267

Attorney	Docket	No.	0129‐004P01	

optimization algorithm and because most histogram bins are usually empty (thus

resulting in ‘wasted’ time during the comparison procedure).

[0037] One solution that the system may use to work around the issue of

computational complexity is to approximate the input histogram {hi} using a signature {sj

= (mj, wj)} for each model; this effectively compresses the information expressed through

the data and thus reduces the time required by the EMD algorithm to converge on a

solution. Not only does this approach avoid degradation of similarity query results, but it

has been shown to consistently improve on results achieved through the histogram-based

approach.

[0038] Another solution the system may use delivers even greater time savings

than other methods by approximating the EMD between two histograms with the wavelet

transform of the difference histogram. This difference histogram can be expressed as a

wavelet series, defined as:

݂ሺݔሻ ൌ 	෍ ௞݂߶ሺݔ െ ݇ሻ
௞

൅	෍ ఒ݂߰ఒሺݔሻ
ఒ

where k represents shifts, ϕ is the scaling function, ψ is the wavelet, and λ := (j,k)

is the Lagrangian multiplier (which is used to identify extrema, or points of

interest in determining the minimal EMD value), and where j represents the

scale, or ‘resolution,’ of the wavelet functions.

[0039] Wavelet transforms are generally useful for compressing sparsely

distributed signals in a set of data, which is the case with a histogram representing a

model’s set of surface ages. By approximating the EMD with weighted wavelet

transform coefficients, comparisons between two models’ histograms can be completed

in linear time (O(n)).

[0040] Regardless of approximate EMD’s specific implementation, its advantages

over a nearest or k-nearest neighbor search include its robustness against partial

alterations to the input data (e.g., a 3D models’ features being locally added, deleted, or

morphed), as well as a higher degree of granularity than high-level model similarity (e.g.,

comparing histogram or signature bins pi and qj). Particularly in light of the vastness of

the datasets from which these detailed comparisons must be made, implementations of

14

Scott: 3D Object Search System

Published by Technical Disclosure Commons, 2016

Attorney	Docket	No.	0129‐004P01	

approximate similarity procedure on semi-structured data delivers the optimal tradeoff

between certainty of results accuracy and computational cost (FIG. 5).

[0041] Although this invention has been disclosed in the context of certain

preferred embodiments and examples, it will be understood by those skilled in the art that

the present invention extends beyond the specifically disclosed embodiments to other

alternative embodiments and/or uses of the invention and obvious modifications and

equivalents thereof. In addition, while a number of variations of the invention have been

shown and described in detail, other modifications, which are within the scope of this

invention, will be readily apparent to those of skill in the art based upon this disclosure. It

is also contemplated that various combinations or sub-combinations of the specific

features and aspects of the embodiments may be made and still fall within the scope of

the invention. Accordingly, it should be understood that various features and aspects of

the disclosed embodiments can be combined with or substituted for one another in order

to form varying modes of the disclosed invention. Thus, it is intended that the scope of

the present invention herein disclosed should not be limited by the particular disclosed

embodiments described above, but should be determined only by a fair reading of the

disclosure.

15

Defensive Publications Series, Art. 267 [2016]

http://www.tdcommons.org/dpubs_series/267

Attorney	Docket	No.	0129‐004P01	

WHAT IS CLAIMED IS:

1. A method for searching a large, unstructured set of 3D models for overall

similarity and specific feature similarity to a query model, the method comprising:

generating a feature tree for the query model;

generating a histogram from the feature tree based on surface ages for surfaces in

the query model;

determining a set of nearest neighbors to the query model using the histogram and

histograms for the set of 3D models; and

determining, from amongst the nearest neighbors, whether a model from the set of

3D models matches the query model using an approximate similarity procedure.

2. The method of claim 1, wherein generating the feature tree includes:

determining surfaces for a volume in the query model;

determining a respective surface age for each surface; and

generating nodes for the feature tree based on the respective surface ages, where

neighboring surfaces with similar surface ages are grouped in a common node of the

feature tree.

3. The method of claim 1, wherein generating the feature includes:

cleaning up the model by merging surfaces in nodes in lower levels of the feature

tree include surfaces with lower surface ages having similar surface ages.

4. The method of claim 1, wherein the feature tree includes nodes representing

increasingly abstract surfaces.

5. The method of claim 1, further comprising assigning each surface for the query

model to a node in the feature tree.

 16

Scott: 3D Object Search System

Published by Technical Disclosure Commons, 2016

	Technical Disclosure Commons
	September 02, 2016

	3D Object Search System
	Wallace P. Scott
	Recommended Citation

	Microsoft Word - 0129-004P01_Object_Similarity_Draft_v2

