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Machine-Learned Temporal Brand Scores for Video Ads 

 

 

BACKGROUND 

Video ads that are presented to users, for example, can vary in their effectiveness.  

For example, the video ad’s effectiveness can depend on how and when visual and audio content 

is presented. 

 

SUMMARY 

In general, a machine learning system is presented that can infer a “brand score” 

curve of a video across the run time for the video.  The system can use a ground truth score 

obtained, for example, using user surveys, audio transcription of words spoken, video 

transcription of words displayed, the type of music being played, and computer-captured signals 

to learn and train a model for inferring brand scores.  A given video can be segmented (e.g., by 

time), and a piecewise brand score for each segment can be generated using the model. 

 

DESCRIPTION OF DRAWINGS 

Figure 1 is a graph showing an example brand effectiveness of a video during its 

presentation over time. 

 

 

DETAILED DESCRIPTION 

Video ads (or other videos), such as video ads that are presented on video 

presentation and sharing sites, are often used by advertisers and/or other content sponsors to 

drive brand awareness and/or to improve users' affinities to certain brands.  A typical video ad 

may be 30 seconds long, for example, which can make it challenging (but worthwhile) to 

determine which parts of the video ad are most effective in driving brand awareness and/or 

effectiveness/favorability of the video ad. 

This document describes an automated way to generate, e.g., continuously over time, scores that 

indicate brand awareness and/or other related scores associated with the effectiveness and/or 

favorability of the video ad.  For example, consider a 30-second video ad for a soft drink 
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product.  During the presentation of the video ad, for example, brand effectiveness (e.g., 

associated with an effect on a person watching the video ad) can vary significantly across 

different parts of the video ad (See Figure 1). 

 

Figure 1
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Figure 1 is a graph 100 showing an example brand effectiveness 102 of a video 

during its presentation over time.  For example, the brand effectiveness 102 is temporal and is 

represented by a line that starts at 0 seconds of a video play time 104 and changes in height 

relative to a brand effectiveness score 106 over the 30-second length of the video.  The graph 

100 can apply to any types of brand scores and for other lengths of presentation that are not 30 

seconds.  The brand effectiveness represented by graph 100 can be an indication, for example, of 

whether people are more likely to retain brand awareness and/or remember the brand in the 

future.  The graph 100 can also indicate brand favorability, e.g., indicating whether the ad 

improves favorability towards the brand, such as over time.  The graph 100 can also be indicative 

of brand loyalty, e.g., did the video ad retain a person’s (e.g., the video viewer’s) loyalty to the 

brand?  The graph 100 and processing associated with the graph can be general enough, for 

example, to handle video ads (including sound), audio-only ads, and soundless video ads, such as 
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for various digital mediums (e.g., video sharing and presentation systems), television, radio, and 

other mediums. 

The graph 100 can be annotated (e.g., if a likeness is presented to a user) to include 

temporal annotations 110-114.  For example, the annotations 110-114 can indicate when a 

segment of the video ad shows the ExampleCola fizzing, when a logo for the ExampleCola is 

displayed, and when the audio of the video ad includes a high note (e.g., sung during a cola 

jingle), as indicated by mages 116-120, respectively.  As displayed in Figure 1, the temporal 

annotations 110-114 (and corresponding images 116-120) can help to account for the height of 

the curve for the brand effectiveness 102. 

Determining brand effectiveness, and developing models for measuring brand 

effectiveness, can be performed based on machine learning.  For example, machine learning 

techniques can make it possible to infer a brand score curve across time for any arbitrary video 

ad.  In some implementations, components of a machine learning system can include, for 

example, a ground truth component, a signals component, and an algorithms component.  

Ground truth, for example, can refer to determining and/or measuring the accuracy of output of 

machine learning techniques, in this case brand awareness or related information. 

For the ground truth component, there can be several ways to obtain ground truth.  

For example, ground truth can be obtained by running brand surveys on users who have seen 

various temporal subsections of a given video ad, such as to obtain a ground truth temporal 

measurement for the video ad (e.g., for a soft drink product).  In some implementations, domain 

experts (e.g., experts regarding soft drinks and/or advertising) can draw ground truth curves on 

various videos that they watch.  In another example, negative values associated with user ground 

truth can be generated by evaluating timestamps associated with sections of video ads that users 

have skipped on video sharing sites and/or other resources. 

For the signals component, many different types of signals can be used, both from 

video and ads sides.  For example, from the presentation or recording of a video ad, an audio 

transcription of the words that are spoken or sung can be generated and used to detect mentions 

of brand name over time.  In another example, video transcriptions of the words being displayed 

during presentation of the video can be used to locate mentions of the brand at certain 

times/positions of the video.  In another example, signals can be determined from user 

preferences/demographics that are associated with types of music played during the presentation 

4

Porteous and Asuncion: Machine-Learned Temporal Brand Scores for Video Ads

Published by Technical Disclosure Commons, 2016



 

 4

of a video ad.  In another example, signals can be captured from computers used by users 

viewing video ads.  The computer-captured signals can include, for example, eye movements, 

mouse movements and clicks, and durations associated with skipping or stopping a video ad.  

Timestamps associated with the computer-captured signals can be matched to temporal 

information associated with subsections of the video ad. 

For the algorithms component, there are a variety of algorithms that can be used to 

infer the brand score curve.  For example, a video can be split into various sub-regions (e.g., 

video segments associated with units of time).  For each sub-region, a simple regression can be 

performed, e.g., using the signals and ground truth components described above.  Based on the 

results, the regressions per sub-region can be pieced together to generate a piecewise brand score 

curve.  In some implementations, more complex inferences can be made. e.g., using conditional 

random fields to optimize the whole curve globally.   

The following example use cases can apply to using brand score curves.  In some 

implementations, advertisers and ads network systems can use the brand score curves to improve 

advertising.  For example, ads network systems can surface a tool (e.g., used by advertisers or 

content sponsors) for rating a given video ad.  The tool can present a given brand score curve to 

an advertisers, for example, to identify which segments of the ads are most effective and to 

suggest segments to be deleted or shortened (e.g., using video ad editing tools that are also 

provided).  In some implementations, displays can be presented that resemble the graph (or at 

least the curve) shown in Figure 1. 

In some situations, video sharing and presentation systems can automatically skip to 

parts of the advertisement that are the most impactful, e.g., considered to affect brand awareness.  

The segments that are automatically skipped can vary, for example, by device type, by user type, 

or by specific user, e.g., if it is know that certain segments are likely to be skipped by the 

corresponding device types, user types, and/or individual users. 

Advertising network systems can charge advertisers for ads based on brand 

awareness, e.g., that is proportional to brand-score-curve-weighted metrics.  For example, if 

advertisers care about reach metrics such as gross rating point (GRP), a brand score curve can be 

used to weight each segment that the user watched. 
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ABSTRACT OF THE DISCLOSURE 

 

A machine learning system infers a “brand score” curve of a video across the run time for 

the video.  The system uses a ground truth score obtained using user surveys, audio transcription 

of words spoken, video transcription of words displayed, type of music being played, and 

computer vision signals to learn a model for inferring the brand score.  A given video is 

segmented, and a piecewise brand score for each segment is generated using the model. 
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