Technical Disclosure Commons

Defensive Publications Series

June 03,2016

MULTIPLE TIER LOW OVERHEAD
MEMORY LEAK DETECTOR

Ben Cheng

Simon Que

Follow this and additional works at: http://www.tdcommons.org/dpubs_series

Recommended Citation

Cheng, Ben and Que, Simon, "MULTIPLE TIER LOW OVERHEAD MEMORY LEAK DETECTOR", Technical Disclosure
Commons, (June 03,2016)
http://www.tdcommons.org/dpubs_series/212

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications

Series by an authorized administrator of Technical Disclosure Commons.

http://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series/212?utm_source=www.tdcommons.org%2Fdpubs_series%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Cheng and Que: MULTIPLE TIER LOW OVERHEAD MEMORY LEAK DETECTOR

MULTIPLE TIER LOW OVERHEAD MEMORY LEAK DETECTOR

ABSTRACT

A memory leak detector system can be used to detect memory leaks, which is when a
computer program fails to release unneeded memory allocations, in a computer that executes
multiple programs. The system utilizes a multi tier methodology to detect memory leaks. In a
first tier, the system collects a histogram representing allocation counts for different allocation
sizes of memory at the computer. If the system detects an above-a-threshold increase in the
number of allocations for one or more of the allocation sizes, the system marks the one or more
allocation sizes as suspected leaks and proceeds to a second tier of the multiple tier method.

In the second tier, the system collects a histogram based on call stacks that led to each
above-a-threshold increase in allocation sizes detected in the first tier. The system marks the call
stacks with an above-a-threshold increase in call stack traces as prospective leaks and proceeds
to a third tier of the multiple tier leak detection method.

In the third tier, the system records the allocation times of each memory allocation that
fits the suspected leak profile, including leak sizes found in the first tier and call stacks found in
the second tier. If the oldest allocations are not being freed and persist over a period of time, then
the system marks the allocation(s), the allocation size(s), and the originating call stack(s) as a

probable memory leak.

Published by Technical Disclosure Commons, 2016

Defensive Publications Series, Art. 212 [2016]

PROBLEM STATEMENT

Memory leaks occur when a software program fails to release memory that is no longer
needed. Memory leaks waste Random Access Memory (RAM) and thus reduce computer
performance. Often, small or slow memory leaks occurring in a program go unnoticed for an
extended period of time until they aggregate and then become noticeable. At this point, though, it
is harder to locate and rectify the sources of the leaks. Thus, it is helpful to detect memory leaks
before they reduce the performance of computers.

There are various methods used for addressing memory leaks which provide feedback to
software programmers about the origin of leaks; however, such methods often carry significant
overhead that slows down the overall execution speed and hence spoil the user experience.
Moreover, existing methods sometimes require a special allocator and a process to terminate.

Thus, there are opportunities to develop alternate methods to detect memory leaks.

DETAILED DESCRIPTION

The systems and techniques described in this disclosure relate to a memory leak detector
system that detects memory leaks using a multiple tier method. The system can be implemented
for use in an Internet, an intranet, or another client and server environment. The system can be
implemented locally on a client device or implemented across a client device and server
environment. The client device can be any electronic device such as a computer, a laptop, a
mobile device, a smartphone, a tablet, etc.

Fig. 1 illustrates an example multiple tier method 100 that can be used to detect memory

leaks. The memory leak detector system utilizes multiple layers of analysis to detect memory

http://www.tdcommons.org/dpubs_series/212

Cheng and Que: MULTIPLE TIER LOW OVERHEAD MEMORY LEAK DETECTOR

leaks in a computer. In an example scenario, the system utilizes three tiers to detect memory
leaks. In a first tier of the multiple tier method, as shown in Fig. 1a, the system initializes 102 a
counter K =1 and collects 104 a histogram representing allocation counts for different allocation
sizes of memory. Memory allocation includes assigning specific memory to programs and/or
services as per their requirements when they are executed. After the programs and/or services
complete their operation or are idle, the processor releases the memory and allocates the memory
to another program or merges the memory within a primary memory of the computer. For every
memory allocation event and memory free event, the system increments or decrements the
allocation count for the particular allocation size.

The system detects 106 if there is an above-a-threshold increase in the number of
allocations for one or more of the memory allocation sizes. Threshold determination will be
described below with reference to Fig. 4. If yes, the system increments 108 the counter K by 1,
i.e., K=K+1. For example, Fig. 2 illustrates histograms 2a, 2b, and 2¢ of allocation sizes (in
bytes) at times t1=0, t1=1 and t1=2. The histograms depict that allocation size 30 has an increase
in allocations from t1=0 to t1=3 as represented by 210, 220 and 230.

If the system does not detect 106 a notable increase in the number of allocations, the
system again initializes 102 the counter K to 1 and flows through the subsequent steps
continuing with step 104.

When the system detects an increase above a static or dynamic threshold in the number of
allocations for a particular allocation size for at least a certain number of consecutive times (like
K=5), that allocation size becomes an indicator of a suspected memory leak. Thus, the system

checks 110 if the value of the counter K is greater than 5. If yes, the system marks 112 the one or

Published by Technical Disclosure Commons, 2016

Defensive Publications Series, Art. 212 [2016]

more increasing allocation sizes as reflecting suspected leaks in the memory and then the system
proceeds to the next tier of the multiple tier method.

However, if the system checks 110 that the value of K is less than 5, the system again
collects 104 a histogram representing allocation counts for different allocation sizes of memory
and flows through the subsequent steps continuing with step 106.

After certain allocation sizes are detected to have above-a-threshold increase in memory
allocations, at least, for example, five times, the system initiates a second level of analysis
(second tier). In the second tier, the system initializes 114 another counter L=1, as shown in Fig.
1b. The system collects 116 histograms of originating call stack traces for the memory allocation
sizes that were marked 112 as suspected leaks in the first tier. A call stack is a data structure that
stores information about active subroutines of a program. Subroutines include a sequence of
program instructions that perform a specific task.

In a manner similar to tier 1, the system detects 118 if the call stack traces have an
above-a-threshold increase for one or more suspected leak allocation sizes. Threshold
determination will be described below with reference to Fig. 4. If yes, the system increments 120
the counter L by 1, i.e., L=L+1. For example, Fig. 3 illustrates histograms 3a, 3b and 3¢ of call
stack traces at times t2=0, t2=1 and t2=2. The histograms depict that one particular call stack
trace for an allocation size (e.g., allocation size 30 from Fig. 2) has above-a-threshold increase as
shown from from t2=0 to t2=3 as represented by 310, 320 and 330.

When the system detects an increase above a static or dynamic threshold in the number of
call stack traces for a particular allocation size for at least a certain number of consecutive times

(like L=5), that corresponding call stack becomes an indicator of a suspected memory leak. Thus,

http://www.tdcommons.org/dpubs_series/212

Cheng and Que: MULTIPLE TIER LOW OVERHEAD MEMORY LEAK DETECTOR

the system checks 122 if the value of L is greater than 5. If yes, then the system marks 124 the
one or more originating call stack traces as suspected call stacks. The system then proceeds to
the third tier of the method.

However, if the system checks 122 that the value of L is less than 5, the system again
collects 116 a histogram of originating call stack traces for the memory allocation sizes that were
marked as suspected leaks in 112 and flows through the subsequent steps continuing with step
118.

In the third tier, the system records the allocation times of each allocation that fits the
suspected leak profile, including suspected leak sizes found in tier 1 and originating call stack
traces found in tier 2. As shown in Fig. 1b, the system checks 126 if the allocation size(s) and the
originating call stack(s) persist as suspected leaks over a period of time. If yes, then the system
marks 126 the allocation, the allocation size(s), and the originating call stack(s) as a probable
memory leak. The system then reports 128 the probable memory leak along with the allocation,
the allocation size(s), and the originating call stack(s) to a server.

If the allocation size(s) and the originating call stack(s) do not persist as suspected leaks
over a period of time, then the system loops back to the first tier and flows through the
subsequent steps continuing with step 102, as shown in Fig. 1a and Fig. 1b.

The multiple tier methodology can be implemented in any software. Fig. 4 illustrates an
example table that the system generates while implementing the multiple tier based method 100
on a chrome browser application. For example, the Fig. 4 depicts memory allocation counts 410
at times t=0, t=1, t=2, and t=3 for various top allocation sizes like 40, 24, etc. The system

calculates delta values for memory allocations by subtracting allocations at a time period 430

Published by Technical Disclosure Commons, 2016

Defensive Publications Series, Art. 212 [2016]

(t=2) from a previous time period 420 (t=1). Fig. 4 shows delta values in parentheses, an
example is illustrated by 450. The system can generate similar table in the second tier for call
stack traces counts.

Further in the table, the system, in the implementation shown, ranks the top allocation
sizes by their delta values, and identifies a first major drop in deltas. A major drop may be
defined as a drop of at least 50%. The system identifies the drop such that the system can locate
notably (above-a-threshold) increasing entries. For example, in the data for t=1 (420) and t=2
(430), the counts for all eight allocation sizes are growing rapidly, so it is difficult to distinguish
notably increasing entries from other increasing entries. However, in the data for t=3 (440), there
is a drop of 50% from delta=498 to delta=169, the delta entries 40, 16, 56, and 32 (450, 460, 470,
and 480) bytes are the ones that occur before this drop, and are suspected as fast growers and
thus become notably increasing entries.

The subject matter described herein can be implemented in software and/or hardware (for
example, computers, circuits, or processors). The subject matter can be implemented on a single
device or across multiple devices (for example, a client device and a server device). Devices
implementing the subject matter can be connected through a wired and/or wireless network. Such
devices can receive inputs from a user (for example, from a mouse, keyboard, or touchscreen)
and produce an output to a user (for example, through a display and/or a speaker). Specific
examples disclosed are provided for illustrative purposes and do not limit the scope of the

disclosure.

http://www.tdcommons.org/dpubs_series/212

Cheng and Que: MULTIPLE TIER LOW OVERHEAD MEMORY LEAK DETECTOR

DRAWINGS

100 Initialize a counter K=1 L/_i
Y

104
Collect a histogram representing allocation counts for different allocation sizes _/
of memory

L]

106

Detect if there is an above-a-threshold
increase in allocation counts for one or
ore of the memory allocation sizes?

v YES 108
| Increment the counter as K=K+1 }—/
he m 110
¢ YES
Mark the one or more memary allocation sizes having continuous /112

above-a-threshold increase in allocation counts as suspected leak sizes

®

Fig. 1a

Published by Technical Disclosure Commons, 2016

100

Defensive Publications Series, Art. 212 [2016]

qt\)

114

Initialize a counter L=1

[

¥

NO

Collect a histogram of originating call stack traces for the memory allocation
sizes that were marked as suspected leaks in 112

116
v

v

118

increase in call stack traces for one or
more of the suspected leak memory
allocation sizes?

Increment the counter as L=L+1

'/ 120

122

—«

l YES

Mark the one or more originating call stack traces having continuous
above-a-threshold increase as suspected call stacks

124

heck if the allocation size(s) and the
originating call stack(s) persist as
spected leaks over a period of time?

YES

Goto
Step 102

Mark the allocation(s), the allocation sizé(s), and the originating call stack(s) that
persist as suspected leaks over time as probable memory leak

/128

v

130

Report the probable memory leak along with the allocation, the allocation size,
and the originating call stack to a server

/

Fig. 1b

http://www.tdcommons.org/dpubs_series/212

Cheng and Que: MULTIPLE TIER LOW OVERHEAD MEMORY LEAK DETECTOR

210 220 230
t1=0 t1=1 -
100 100 100
75 75 75
50 mp 5 - 5
25 I l I I I I 25 25
. 10 30 50 70 00 0 0
10 30 50 70 90 10 30 50 70 90
ALLOCATION SIZE (BYTES) ALLOCATION SIZE (BYTES) ALLOCATION SIZE (BYTES
Fig. 2a Fig. 2b Fig. 2c
Fig. 2
310 320 330
t2=0 t2=1 t2=2
10 100
- S - 50

bl

CALL STACK CALL STACK CALL STACK
Fig. 3a Fig. 3b Fig. 3¢
Fig. 3

Published by Technical Disclosure Commons, 2016 10

410

Defensive Publications Series, Art. 212 [2016]

420 430 440
\ \ \
Top alloc sizes t=0 t=1 t=2 t=3 /
40 8690 13941 (5251) 15275 (1334) 16315 (1040)* A
24 6865 10685 (4889) 10930 (245) 10943 (13) 470
16 5796 8959 (2094) 9608 (649) 10106 (498) e
56 5167 7851 (2836) 8824 (973) 9826 (1002) "
32 5015 7641 (2474) 8486 (845) 9260 (774) #~
48 4931 5874 (943) 6067 (193) 6236 (169)
8 2523 3796 (1273) 3872 (76) 3917 (45)
64 1769 3359 (1590) 3474 (115) 3537 (63)
Fig. 4

http://www.tdcommons.org/dpubs_series/212

	Technical Disclosure Commons
	June 03, 2016

	MULTIPLE TIER LOW OVERHEAD MEMORY LEAK DETECTOR
	Ben Cheng
	Simon Que
	Recommended Citation

	tmp.1464987318.pdf.aKa6H

