
Technical Disclosure Commons

Defensive Publications Series

April 20, 2016

Packet loss detection based on recent
acknowledgement (RACK)
Yuchung Cheng

Neal Cardwell

Follow this and additional works at: http://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Cheng, Yuchung and Cardwell, Neal, "Packet loss detection based on recent acknowledgement (RACK)", Technical Disclosure
Commons, (April 20, 2016)
http://www.tdcommons.org/dpubs_series/192

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/234665129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series/192?utm_source=www.tdcommons.org%2Fdpubs_series%2F192&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US


1

Packet loss detection based on recent acknowledgement (RACK)

ABSTRACT

This disclosure describes techniques for packet loss detection in networks based on

Recent ACKnowledgement (RACK). RACK technique uses the notion of time, instead of

conventional approaches for packet loss detection such as packet or sequence counting.

Packets are deemed lost if a packet that was sent sufficiently later has been cumulatively or

selectively acknowledged. In example implementations, a sender that implements RACK

technique records packet transmission times and infers losses using cumulative or selective

acknowledgements.

KEYWORDS

● packet loss detection

● loss recovery

● packet reordering

● TCP

BACKGROUND

Packet loss detection techniques are employed in packet-switching communication

networks, such as networks that utilize the Transmission Control Protocol (TCP).

Conventional packet loss detection techniques may not perform well for networks that

experience modern traffic patterns or underlying network changes. For example, the

prevalence of interactive request-response traffic means that TCP is often application-limited.

Further, wide deployment of traffic policers can result in frequent lost retransmissions and

losses at the tail of transactions. Additionally, mobile/wireless and router load-balancing can

cause relatively frequent occurrences of small degrees of reordering.

Such factors make existing approaches such as packet or sequence counting

inefficient. Mechanisms that are based purely on counting packets in sequence order can

either detect packet loss quickly or accurately. However, it is difficult to achieve both speed

and accuracy when the sender is application-limited, or when packet reordering is

unpredictable.

2

Cheng and Cardwell: Packet loss detection based on recent acknowledgement (RACK)

Published by Technical Disclosure Commons, 2016



2

One heuristic approach is to mark a retransmission as lost, if it was sent before a

limited transmit (e.g., new data packet) is acknowledged in recovery, since the

acknowledgement implies that at least one round trip time has elapsed. However, such

approach has several limitations - it cannot detect tail drops (since it depends on limited

transmit), it is disabled upon reordering, and it is only enabled in fast recovery, but not

timeout recovery.

The techniques described in this disclosure enable quick and accurate packet loss

detection. The techniques address the limitations of packet-counting based techniques and of

the simple heuristic approach described above.

DESCRIPTION

This disclosure describes packet loss detection techniques based on recent

acknowledgements (“RACK”). RACK technique is implemented by a sender that sends

packets over a network to a receiver. RACK can be implemented in a network with no

changes on the receiver side.

A sender that implements RACK technique stores three factors.

1. In implementing RACK, the sender stores a selective acknowledgement SACK

scoreboard. RACK presumes that the connection uses SACK options. In RACK

implementations, the scoreboard is a data structure to store selective

acknowledgement information on a per connection basis.

2. The sender stores its most recent transmission time at a fine granularity e.g.,

millisecond granularity. In certain implementations, e.g., for intra-datacenter

communications, RACK technique can benefit from a sender maintaining such

information at microsecond granularity.

3. For each packet, the sender stores whether the packet has been retransmitted or not.

Example Implementation Environment

Fig. 1 shows an example environment in which RACK technique is implemented.

Sender (110) is configured in communication with network (130) over which it can

communicate (e.g., transmit packets to) with receiver (140). While only one sender and

receiver are shown in Fig. 1, RACK technique can be employed in any size of network, with

3

Defensive Publications Series, Art. 192 [2016]

http://www.tdcommons.org/dpubs_series/192



3

multiple senders or recipients. Sender and receiver may each be any type of device that is

capable of communication over a packet-switched network, such as a server computer, a

personal computer, a wireless device, a wearable device, a head mounted display, or such.

Network (130) can include one or more intermediate devices such as routers, switches,

gateways, hubs, etc. Network (130) can be a wired network, a wireless network, or a

combination.

In the example implementation of RACK technique shown in Fig. 1, the sender stores

values for a number of variables in memory (150).

1. Packet.xmit_time (112) is the time of the last transmission of a data packet from the

sender, including any retransmissions. The sender records the transmission time for

each packet sent that is not yet acknowledged. Packet.xmit_time is stored at a fine

granularity of time e.g., at millisecond granularity or finer.

2. RACK.xmit_time (114) is the transmission time of the most recent packet from

among all the packets from the sender that were delivered (e.g., cumulatively or

selectively acknowledged) to the receiver on the connection.

3. RACK.RTT (116) is the associated round-trip time (RTT) measured when

RACK.xmit_time is changed. It is the round-trip time of the most recently transmitted

packet that has been delivered to the receiver on the connection.

4. RACK.reo_wnd (118) is a reordering window for the connection. The reordering

window is computed in the same unit of time as that used to record packet

transmission times. It is used to defer the moment at which RACK marks a packet as

lost.

5. RACK.min_RTT (120) is the estimated minimum round-trip time of the connection.

The sender stores Packet.xmit_time (112) for each packet in flight. The sender stores

RACK.xmit_time (114), RACK.RTT (116), RACK.reo_wnd (118) and RACK.min_RTT

(120) per connection.

Example Method

Fig. 2 shows a flowchart of an example method to implement the RACK techniques

of this disclosure. In an implementation, Sender (110) can implement the process of Fig. 2 to

detect packet loss over a connection on the network.

4

Cheng and Cardwell: Packet loss detection based on recent acknowledgement (RACK)

Published by Technical Disclosure Commons, 2016



4

Upon transmitting or retransmitting a packet, the sender records the transmission time

in Packet.xmit_time. In this example, the sender stores the transmission time for each packet

in flight. Upon receiving an acknowledgement (220), the sender updates (230)

RACK.min_RTT. To estimate RACK.min_RTT, the sender uses round-trip time (RTT)

measurements. For example, the sender tracks a simple global minimum of all RTT

measurements from the connection (e.g., the connection with receiver 140 over network 130).

In another example, the sender tracks a windowed minimum-filtered value of recent RTT

measurements. Other approaches to estimate RACK.min_RTT can also be used.

The sender further updates RACK.reo_wnd (240). RACK.reo_wnd permits the sender

to handle the prevalent small degree of reordering. RACK.reo_wnd serves as an allowance

for settling time before the sender marks a packet as lost. In one example, RACK.reo_wnd

may be set as a default value e.g., 1 millisecond. In another example, the sender implements

reordering detection techniques to dynamically adjust the reordering window. For example,

when the sender detects packet reordering, it may change RACK.reo_wnd to one-fourth of

RACK.min_RTT.

The sender utilizes information provided in a received acknowledgement to mark

each packet that has been acknowledged (ACKed) or selectively acknowledged (SACKed) as

delivered. The sender then determines the most recent Packet.xmit_time from among all

packets that have been acknowledged and advances (250) RACK.xmit_time (e.g., updates

RACK.xmit_time to be equal to the most recent Packet.xmit_time), if the most recent

Packet.xmit_time is greater than a current value of RACK.xmit_time.

In some examples, the sender does not update the RACK.xmit_time e.g., if the

retransmission is considered as likely spurious. The sender ignores packets that are

retransmitted in the determination of RACK.xmit_time if at least one of the below two

conditions is true:

a) Timestamp Echo Reply field (TSecr) of the timestamp option of the ACK, if

available, indicates the ACK was not an acknowledgement of the last

retransmission of the packet

b) The packet was last retransmitted less than RACK.min_RTT ago.

5

Defensive Publications Series, Art. 192 [2016]

http://www.tdcommons.org/dpubs_series/192



5

If the RACK.xmit_time is changed (260) based on a particular ACK, the sender also

records the RTT based on the ACK e.g., the sender sets RACK.RTT = (current time)-

RACK.xmit_time.

If the RACK.xmit_time is not changed, the sender continues transmission of packets

and measurement of the various parameters. If the RACK.xmit_time is changed, the sender

detects losses (270).

Loss Detection

Marking packets as lost

For each packet that has not been acknowledged (e.g., fully SACKed), the sender

determines if RACK.xmit_time is after Packet.xmit_time + RACK.reo_wnd. If

RACK.xmit_time is after Packet.xmit_time + RACK.reo_wnd, the sender marks the packet

(or its corresponding sequence range) as lost. In this example, the sender determines another

packet that was sent later has been delivered, and the reordering window or "reordering

settling time" has already passed, to conclude that the packet was likely lost.

Packets not yet lost

The sender determines, for a given packet, that another packet that was sent later has

been delivered. The sender further determines that the reordering window has not passed.

Based on these determinations, the server concludes that the given packet is not lost as of the

time of determination.

The sender waits for the next ACK to further advance RACK.xmit_time. However, in

some implementations, this can risk a timeout (RTO) e.g., if no more ACKs come back (e.g.,

due to losses or application limit). In some implementations, the sender installs a "reordering

settling" timer for timely loss detection. For example, the sender sets the timer to fire at the

earliest moment at which it is safe to conclude that some packet is lost. In this example, the

earliest moment is the time it takes to expire the reordering window of the earliest

unacknowledged packet in flight, which is the minimum value of (Packet.xmit_time +

RACK.RTT + RACK.reo_wnd + 1ms) across all unacknowledged packets.

Example pseudocode for lost packet detection

6

Cheng and Cardwell: Packet loss detection based on recent acknowledgement (RACK)

Published by Technical Disclosure Commons, 2016



6

RACK_detect_loss():
min_timeout = 0

For each packet, Packet, in the scoreboard:

If Packet is already SACKed, ACKed, or marked
lost and not yet retransmitted:

Skip to the next packet

If Packet.xmit_time > RACK.xmit_time:
Skip to the next packet

timeout = Packet.xmit_time + RACK.RTT +
RACK.reo_wnd + 1

If now >= timeout
Mark Packet lost

Else If (min_timeout == 0) or (timeout is
before min_timeout):

min_timeout = timeout

If min_timeout != 0
Arm the RACK timer to call RACK_detect_loss()

at the time min_timeout

Advantages

One advantage of RACK technique is that it can utilize every data packet, original or

retransmission, to detect losses of packets that were sent prior to it.

Example 1: Tail Drop

Consider a sender that transmits a window of three data packets (P1, P2, P3), and P1

and P3 are lost. Suppose the transmission of each packet is at least RACK.reo_wnd after the

transmission of the previous packet. RACK technique marks P1 as lost when the SACK of

P2 is received, triggering the retransmission of P1 as R1. When R1 is cumulatively

acknowledged, RACK technique marks P3 as lost and the sender retransmits P3 as R3. This

example illustrates how RACK technique is able to repair certain drops at the tail of a

transaction without any timer. Packet or sequence count based techniques cannot detect such

losses.

7

Defensive Publications Series, Art. 192 [2016]

http://www.tdcommons.org/dpubs_series/192



7

Example 2: Lost Retransmit

Consider a window of three data packets (P1, P2, P3) that are sent; P1 and P2 are

dropped. Suppose the transmission of each packet is at least RACK.reo_wnd after the

transmission of the previous packet. When P3 is SACKed, RACK technique marks P1 and

P2 lost and the sender retransmits these as R1 and R2. Suppose R1 is lost again (as a tail

drop) but R2 is selectively acknowledged. RACK technique marks R1 lost for retransmission

again. Conventional approaches cannot detect such losses. Such a lost retransmission is very

common when TCP is being rate-limited e.g., by token bucket policers with large bucket

depth and low rate limit. Retransmissions are often lost repeatedly because standard

congestion control requires multiple round trips to reduce the rate below the policed rate.

Example 3: Reordering

Consider a common reordering event: a window of packets sent as (P1, P2, P3). P1

and P2 carry a full payload of MSS octets, but P3 has only a 1-octet payload due to

application-limited behavior. Suppose the sender has detected reordering previously and

RACK.reo_wnd is min_RTT/4. Now P3 is reordered and delivered first, before P1 and P2.

As long as P1 and P2 are delivered within min_RTT/4, RACK technique does not consider P1

and P2 lost. But if P1 and P2 are delivered outside the reordering window, then RACK will

still falsely mark P1 and P2 lost. RACK technique can improve performance in such

situations by measuring the degree of reordering in time, instead of packet distances, e.g., by

storing the delivery timestamp of each packet. Alternatively, RACK can use smoothed value

of round-trip time.

The examples above show that RACK technique is particularly useful when the sender

is limited by the application, which is common for interactive, request/response traffic.

Similarly, RACK technique works when the sender is limited by the receive window, which

is common for applications that use the receive window to throttle the sender. RACK

technique decouples loss detection from congestion control. RACK technique is applicable

for both fast recovery and recovery after a retransmission timeout (RTO). RACK is

compatible with standard RTO techniques. RACK technique has no impact on the risk profile

for TCP.

8

Cheng and Cardwell: Packet loss detection based on recent acknowledgement (RACK)

Published by Technical Disclosure Commons, 2016



8

Examples of use

The techniques described in this disclosure can be implemented for packet loss

detection in a variety of contexts. For example, the techniques may be implemented in

operating systems (e.g., in OS kernels) to detect TCP losses. The techniques can be used to

detect packet loss within a data center (e.g., intra-datacenter traffic), between data centers, or

edge serving. The techniques can also be implemented in UDP-based protocols, and used for

packet loss detection during communications between a data center (e.g., that provides

Internet-based applications) and client internet browsers or applications.

CONCLUSION

The techniques described in this disclosure permit accurate and timely detection of

packet loss for networks. The techniques can be particularly useful for modern traffic patterns

(e.g., interactive request-response traffic), in networks that have wide deployment of traffic

policers, and in the presence of mobile/wireless and router load balancing.

By utilizing the time sequence instead of the data sequence of packets, the techniques

of this disclosure can detect tail drops when a later retransmission is acknowledged (or

selectively acknowledged). The use of a dynamically adjusted reordering window can reduce

false positives even in the presence of small degree of reordering. The techniques perform

well in the presence of unpredictable or frequent reordering of packets.

9

Defensive Publications Series, Art. 192 [2016]

http://www.tdcommons.org/dpubs_series/192



9

FIGURES

10

Cheng and Cardwell: Packet loss detection based on recent acknowledgement (RACK)

Published by Technical Disclosure Commons, 2016



10

11

Defensive Publications Series, Art. 192 [2016]

http://www.tdcommons.org/dpubs_series/192


	Technical Disclosure Commons
	April 20, 2016

	Packet loss detection based on recent acknowledgement (RACK)
	Yuchung Cheng
	Neal Cardwell
	Recommended Citation


	

