
Technical Disclosure Commons

Defensive Publications Series

February 29, 2016

Back-traced Garbage Collection
Liam Appelbe

Follow this and additional works at: http://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Appelbe, Liam, "Back-traced Garbage Collection", Technical Disclosure Commons, (February 29, 2016)
http://www.tdcommons.org/dpubs_series/164

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technical Disclosure Common

https://core.ac.uk/display/234665079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.tdcommons.org/dpubs_series/164?utm_source=www.tdcommons.org%2Fdpubs_series%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US


1

Back-traced Garbage Collection

Authors: Liam Appelbe

ABSTRACT

This disclosure describes back-traced garbage collection in a computer. A back-traced

garbage collector searches backwards from an object in an object graph, until a root node is

encountered, or until there are no further objects to search. If a root node is not encountered,

the searched objects are unreachable and are deleted. The garbage collector can run

incrementally, process portions of the object graph, and determine reachability of individual

objects without examining the entire object graph. The garbage collector has low latency. The

garbage collector is tunable, for example, in response to program characteristics and

performance requirements.

KEYWORDS

● Garbage collection

● Mark-sweep

● Memory management

● Back tracing

BACKGROUND

Garbage collection techniques reclaim garbage i.e., memory that is occupied by

objects that are no longer in use by a computer program. Most current garbage collectors

involve variations of mark and sweep techniques.

Garbage collectors based on mark and sweep scan the entire heap (or some partition

of the heap) before determining that an object is unreachable garbage. This places limits on

incremental operation of such garbage collectors. In mark and sweep, the garbage collector

searches from root pointers (i.e., all pointers in the call stack or in global variables, etc.) to

find and mark every reachable object. Once the search is complete, a mark-and-sweep

garbage collector scans all objects again and deletes objects that were not marked. These

techniques have two main drawbacks. First, the program (e.g., an application program that

allocated the objects in the heap) must be halted during garbage collection, since it cannot

2

Appelbe: Back-traced Garbage Collection

Published by Technical Disclosure Commons, 2016



2

cope with the object graph being mutated during the search. Second, every reachable object

must be examined by the garbage collector before any objects are deleted.

Tri-color marking is a variation of mark and sweep that addresses the first drawback

by introducing a three state marking system. In operation, garbage collectors mark objects as

white (not yet reached), gray (reached, but not yet processed), or black (reached and

processed). Tri-color marking starts with all objects marked as white, except for the roots

which are marked gray. In each iteration, the garbage collector picks a gray object, marks it

black, and marks all the objects it points to as gray. This preserves the invariant that no black

object ever points to a white one. Therefore, once there are no gray objects left, the garbage

collector concludes that all the white objects are garbage.

Tri-color marking can be run incrementally. However, such garbage collectors can

encounter significant pauses. For example, the entire reachable set has to be processed by

such garbage collectors before any objects can be deleted. Further, the requirement of

reasonable bounds on the heap size limits how incremental the search can be.

Some modern garbage collectors combat these issues with more complicated

optimizations such as the use of multiple threads to perform the search, or running the search

concurrently with the rest of the program. Another current technique is generational

collection. Under generational collection, the garbage collector divides the heap into young

and old generations, and runs different policies on each. These optimizations add complexity,

and do not necessarily solve the underlying problem. Garbage collectors are usually

optimized for specific use cases, balancing latency, throughput, and heap size.

DESCRIPTION

This disclosure describes techniques for back-traced garbage collection in a computer.

A computer that implements the techniques includes one or more processors and memory.

The one or more processors execute instructions stored as software. In different examples, the

garbage collection techniques of this disclosure can be implemented as part of an operating

system, part of a run-time environment, part of a sandbox, or other computer programs. The

garbage collection techniques receive as input an object graph. The object graph includes one

or more objects stored in the memory of the computer. In some implementations, the

techniques identify and mark objects that can be deleted without affecting operation of the

computer. In some implementations, garbage collection includes deleting the identified

3

Defensive Publications Series, Art. 164 [2016]

http://www.tdcommons.org/dpubs_series/164



3

objects e.g., by marking memory addresses corresponding to the object as unused, by

overwriting memory addresses corresponding to the object, etc.

The techniques eliminate the requirement to search the entire object graph before

deletion of any objects. A garbage collector that implements these techniques can examine

parts of the object graph and determine the examined objects to be reachable or unreachable,

without scanning the entire object graph. The garbage collector can run the search fully

incrementally.

Back-tracing example

Fig. 1 shows an example heap with details of back-traced garbage collection. Fig. 1a

shows an initial heap. The heap has two root objects A and B, and other objects C-P. Back-

traced garbage collection can begin from any object in the heap. In some examples, the

starting object may be picked randomly. In some examples, the starting object may be picked

based on an age of the object.

In the example shown in Fig. 1b, garbage collection begins from object I. Back-

tracing from object I towards object D eventually finds root object A. Therefore, the subgraph

involving objects D and I is determined to be reachable. In the example shown in Fig. 1c,

garbage collection begins from object P. Back-tracing from P towards object N finds N and

terminates at object J. Since no root object is found, it is determined that the subgraph that

includes P, N, and J is unreachable from a root object, and can be deleted. Fig. 1d shows the

heap after the sub-graph is deleted.

Overview of back-tracing technique

During execution, each object in the heap maintains a list of every pointer that points

to it. The garbage collector keeps a list of every object it manages. These lists introduce

memory overhead, but are maintainable in O(1). The technique performs an incremental

depth first search from each selected object back along the list of incoming pointers for that

object. Each iteration of the search processes a single object as follows:

1. If the search stack is empty, the garbage collector picks an object from the global

object list, marks the object as visited, pushes it to the search stack, and adds it to the

list of visited objects.

2. The garbage collector pops an object from the search stack.

4

Appelbe: Back-traced Garbage Collection

Published by Technical Disclosure Commons, 2016



4

3. The garbage collector determines, for each pointer pointing to the object, if the

pointer is from a root object.

a. If the pointer is from a root object, the garbage collector determines that the

sub-graph is reachable. If the sub-graph is reachable, the garbage collector

clears the “visited” flag of each object in the list of visited objects. Further, the

garbage collector empties the list of visited objects and the search stack, and

ends the iteration.

b. If the pointer is from an object that is not visited, the garbage collector marks

it as visited. Further, the garbage collector pushes the object to the search

stack and adds it to the list of visited objects.

4. If the search stack is empty, the garbage collector determines that the search

completed without finding a root object. Therefore, the garbage collector concludes

that the subgraph is garbage, deletes all the objects in the list of visited objects and

empties the list.

Each back-tracing iteration processes a single object. Therefore, a search that

successfully finds and deletes a subgraph of N unreachable objects takes N iterations to

complete. On average, the number of deleted objects per iteration is one.

Garbage collector in operation

In some implementations, whenever a new object is allocated, one or more iterations

of search are performed. Performing such iterations can ensure that the ratio of unreachable

objects to reachable objects (i.e., the garbage ratio) remains with a range around a steady

state. With a greater number of iterations performed per allocation the steady state garbage

ratio is lower.

In one example, two iterations of the search are performed each time an object is

allocated. If there is no garbage, the garbage collector does not delete any objects and the

heap grows at a rate of one object per allocation. However, if the heap is mostly garbage, a

majority of iterations of the garbage collector result in deletions. Therefore, as one object is

allocated, an average of two objects are deleted. In this case, the heap shrinks at a rate of one

object per allocation. Thus, in this example, the garbage collector acts as a feedback

controller, with a steady state where the heap includes approximately equal numbers of

reachable and garbage objects i.e., a 1:1 garbage ratio.

5

Defensive Publications Series, Art. 164 [2016]

http://www.tdcommons.org/dpubs_series/164



5

Back-traced garbage collection state machine

Fig. 2 shows an example state transition diagram for a garbage collector that

implements back-traced garbage collection techniques of this disclosure. A garbage collector

that implements steps described in the overview described above may encounter pauses. For

example, pauses may be encountered when the number of objects searched is large. For

example, pauses may be encountered at step 3a described above, where the garbage collector

determines that the sub-graph is reachable. In another example, pauses may be encountered at

step 4 described above, where the garbage collector determines that the search completed

without finding a root object. In some cases, pauses may also be encountered in the loop in

step 3 described above, where the garbage collector determines if an incoming pointer is from

a root object, when a searched object has a large number of incoming pointers.

In a garbage collector that implements the state machine illustrated in Fig. 2, such

pauses are eliminated. As shown in Fig. 2, the garbage collector operates in five different

modes. Each iteration of the garbage collector begins in one of the modes, processes one

object or reference, e.g., a pointer, and transitions to a particular mode for the next iteration.

1. Initialize mode: In the initialize mode, the garbage collector chooses an object to

search. For example, if the search stack is empty, the garbage collector picks an object

to begin the search from. If the search stack is not empty, the garbage collector pops

an object from the search stack. After selection of the object, the garbage collector

sets the current reference to be processed to the first incoming reference to the

selected object. The garbage collector then transitions to search mode.

2. Search mode: In the search mode, the garbage collector processes a single reference

to the current object (e.g., the object selected in the initialize mode). If the current

reference is a root, the garbage collector transitions to clear mode. If the object that

the reference comes from is not yet visited, the garbage collector marks the object as

visited, pushes it to the search stack, and adds it to the list of visited objects. If there

are more references to the current object, the garbage collector sets the current

reference to the next one in the list of incoming references and remains in search

mode. Otherwise the garbage collector determines that the search for the current

object is completed. The garbage collector then determines if the search stack is

empty. If the search stack is empty, the garbage collector transitions to the finalize

6

Appelbe: Back-traced Garbage Collection

Published by Technical Disclosure Commons, 2016



6

mode. If the search stack is not-empty, the garbage collector transitions to initialize

mode.

3. Clear mode: In the clear mode, the garbage collector clears the visitation flag on a

single object from the list of visited objects. If the processed object is determined to

be the last object, the garbage collector empties the list of visited objects and

transitions to initialize mode.

4. Finalize mode: In the finalize mode, the garbage collector calls the destructor of a

single object from the list of visited objects and removes it from the global list of

objects. If the processed object is determined to be the last object, the garbage

collector transitions to destroy mode.

5. Destroy mode: In the destroy mode, the garbage collector deletes a single object from

the list of visited objects. If the processed object is determined to be the last object,

the garbage collector empties the list of visited objects and transitions to initialize

mode.

Each iteration of the garbage collector is O(1). However, more iterations may be

needed to maintain the garbage ratio at 1:1. The garbage collector completes a reachable

search of N objects with an average of r incoming references per object in N(r + 2) steps- N

initialize steps, Nr search steps, and N clear steps). The garbage collector completes an

unreachable search in N(r + 3) steps- N initialize steps, Nr search steps, N finalize steps, and

N destroy steps. In this example, maintaining the garbage ratio at 1:1 requires 2r + 5

iterations per allocation, where r is the ratio of total references to total objects.

Advantages of back-traced garbage collection

The back-traced garbage collection techniques of this disclosure can maintain

consistent performance in different situations, in terms of mean latency, mean throughput,

and mean waste. The search of the object graph can be run completely incrementally, with

only a few steps performed at a time. Also, only a small portion of the object graph need to

be examined to make a determination of whether the examined objects are reachable from

root nodes i.e., to determine whether the examined objects are garbage or not. The techniques

also have clear and predictable relationship between throughput, waste, and the number of

iterations per object allocation.

In some implementations, the number of iterations per object allocation can be

selected based on the application program. For example, the number of steps can be selected

7

Defensive Publications Series, Art. 164 [2016]

http://www.tdcommons.org/dpubs_series/164



7

on the fly, as the garbage collector is in operation, based on the memory usage of the

program. Less memory usage may be achieved, for example, by executing more iterations of

back-traced garbage collection per object allocation. In another example, the garbage

collector steps can be performed in larger chunks e.g., during a downtime of the program.

Back-traced garbage collection techniques of this disclosure permit garbage collection

to performed incrementally, by scanning small sections of an object graph. These techniques

can determine reachability of objects without examining the entire graph. Garbage collectors

that implement these techniques can be run in small increments and reduce pauses due to

garbage collection. Further, such garbage collectors can maintain predictable heap size. Also,

the pause time is independent of the size of the heap. Garbage collectors that implement these

techniques can achieve low latency. Such techniques may be effective, for example, in

situations where latency minimization and consistency of garbage collector performance are

priorities.

FIGURES

Fig. 1

8

Appelbe: Back-traced Garbage Collection

Published by Technical Disclosure Commons, 2016



8

9

Defensive Publications Series, Art. 164 [2016]

http://www.tdcommons.org/dpubs_series/164


	Technical Disclosure Commons
	February 29, 2016

	Back-traced Garbage Collection
	Liam Appelbe
	Recommended Citation


	

